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Abstract

In this work we consider the problem ∆u = a(x)up in Ω, ∂u
∂ν = λu on ∂Ω, where

Ω is a smooth bounded domain, ν is the outward unit normal to ∂Ω, λ is regarded as
a parameter and 0 < p < 1. We consider both cases where a(x) > 0 in Ω or a(x) is
allowed to vanish in a whole subdomain Ω0 of Ω. Our main results include existence
of nonnegative nontrivial solutions in the range 0 < λ < σ1, where σ1 is characterized
by means of an eigenvalue problem, uniqueness and bifurcation from infinity of such
solutions for small λ, and the appearance of dead cores for large enough λ.

1. Introduction

The aim of the present work is to complete the study initiated in [11] of the nonnegative
solutions to the following boundary-value problem:





∆u = a(x)up in Ω

∂u

∂ν
= λu on ∂Ω,

(1.1)

where Ω is a C2,γ domain of RN , N ≥ 2, a ∈ Cγ(Ω) is a nonnegative weight function,
p > 0 and λ is a real parameter. While in [11] the case p > 1 was treated, we are focusing
our attention here in the complementary range 0 < p < 1. This range is in principle
more complex, since standard techniques employed for p > 1 are useless here, namely: sub
and supersolutions, global minimization, strong maximum principle and linearization near
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u = 0. For some reasons which will become clear later on, this regime is sometimes termed
as “degenerate”.

On the other hand, in reaction diffusion theory, the nonlinear term up represents the
degradation rate of a certain reference reactant whose density is given by u. The exponent
p is known as the order of the reaction. In this context, the case 0 < p < 1 is interesting in
its own right (see [3]).

The main novelty in problem (1.1) is that the parameter appears precisely in the boundary
condition. With respect to this parameter, we will perform a complete analysis of the
bifurcation diagram of nonnegative solutions to (1.1), which will be shown to be entirely
different from the case p > 1 (see Figures 1, 2 and 4).

In the course of the exposition, we are considering in first place the case of a positive
weight a(x) > 0 in Ω, and then we will deal with the situation in which a(x) vanishes in
a smooth nonempty subdomain Ω0 of Ω (see [18], [6], [8], [17], [10], [7] for problems with
Dirichlet or Robin boundary conditions, none of them depending on parameters). It should
be remarked that dropping the connectedness of Ω0 does not lead to genuinely new features
regarding the material here analyzed and we are therefore omitting its discussion. Also for
the sake of brevity, we are restricting our analysis to treat the cases where either Ω0 is
strongly contained in Ω or where Ω0 “touches” ∂Ω in a nontrivial way (see hypothesis (H)).
On the other hand, we point out that due to the smoothness of the main domains Ω, Ω0, Ω+

involved in this work (see details below), their boundaries can only exhibit a finite number
of connected components.

An important feature to stress with regard to problem (1.1) is that the strong maximum
principle is not applicable and thus nonnegative nontrivial solutions need not be positive
in Ω. Indeed, it will be seen that solutions u develop a dead core, that is, the set O =
{x ∈ Ω : u(x) = 0} has nonempty interior for large enough λ (see for instance [3] or [9]
for “dead core” phenomenology), and this entails in some domains multiplicity of solutions.
Nevertheless, we can still ensure that solutions are unique for small enough λ and moreover
that a bifurcation from infinity at λ = 0 takes place. Additionally, particular properties of
problem (1.1) in the ball are also stated (see below).

We come now to give precise statements of our results. First of all we consider the case
of positive weights.

Theorem 1. Assume Ω is a C2,γ bounded domain of RN , a ∈ Cγ(Ω), a(x) > 0 in Ω and
0 < p < 1. Then problem (1.1) possesses the following features:

(i) If λ ≤ 0, then problem (1.1) does not have nonnegative nontrivial solutions. For λ > 0,
there is always a nonnegative nontrivial solution u ∈ C2,γ1(Ω), γ1 = min{γ, p}.

(ii) There exists λ0 > 0 such that for 0 < λ < λ0, problem (1.1) has a unique classical
nonnegative solution uλ. In addition, uλ is positive in that range, uλ ∈ C2,γ(Ω) while
the mapping λ → uλ regarded as attaining its values in C2,γ(Ω) is real analytic and
decreasing. Moreover,

lim
λ→0+

λ
1

1−p uλ =

(
1

|∂Ω|
∫

Ω

a(x)

) 1
1−p

in C2,γ(Ω). In particular, uλ → +∞ uniformly in Ω as λ → 0+.
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(iii) There exist positive constants C and λ1 such that for all nonnegative nontrivial solu-
tions u ∈ C2,γ1(Ω) to (1.1) with λ ≥ λ1 we have

u ≤ Cλ−
2

1−p . (1.2)

(iv) There exists λ2 > 0 such that all nonnegative nontrivial solutions uλ to (1.1) for λ ≥ λ2

develop a dead core Oλ := {uλ = 0}, Oλ → Ω uniformly as λ → +∞ in the sense that
for λ large {d(x) ≥ dλ} ⊂ Oλ with dλ → 0 as λ → ∞, d(x) = dist(x, ∂Ω). Moreover,
dλ can be chosen as

dλ =
K

λ
,

for a certain K > 0 provided a > 0 on ∂Ω.

l lll
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u u
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a > 0,      p > 1 a > 0,      0 < p < 1

Figure 1. Comparison between the bifurcation diagrams of cases p > 1 and 0 <

p < 1 for a > 0 in Ω. Continuous pieces in the diagrams stand for uniqueness, the
corresponding branches being smooth curves. Multiplicity is vaguely depicted by more
than one branch in dotted lines.

Part (iv) of Theorem 1 implies that nonnegative solutions are nontrivial only near the
boundary of Ω for large λ. By means of a mixed version of problem (1.1) (see (5.1) and
Theorem 11) it is possible to show that several solutions can be constructed if we assume
that ∂Ω consists in more than one connected component. We remark that this phenomenon
is not present in the equation ∆u = λup if the boundary condition is u = 1 on ∂Ω, the
problem treated for instance in [3].

Theorem 2. Assume Ω is a bounded C2,γ domain such that ∂Ω has k connected components.
Then problem (1.1) has at least 2k − 1 nonnegative nontrivial solutions for large enough λ.

We now turn to consider problem (1.1) in a specific domain: the unit ball B in RN . In
this case one should expect that a radial solution exists provided a is also radial. We show
that this is indeed the case, and moreover the radial solution is unique for large λ. It could
be thought indeed that there are no nonradial solutions, since in contrast with Theorem 2,
∂B is connected and that result can not be applied. Surprisingly, we prove that this is not
the case, by constructing a second solution for large λ which is not radial. For simplicity,
we are only considering the case a(x) = 1.
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Theorem 3. Assume Ω = B, a(x) = 1 and 0 < p < 1. Then

(i) For every λ > 0, there exists at least a radially symmetric nonnegative nontrivial
solution to (1.1).

(ii) There exist λ0, λ3 > 0 such that problem (1.1) has a unique radially symmetric non-
negative nontrivial solution uλ both for 0 < λ < λ0 and λ > λ3.

(iii) For λ > λ3 the radial solution uλ has a dead core Oλ = {x ∈ B : |x| ≤ r(λ)}, where

r(λ) ∼ 1− α

λ
as λ → +∞

and α = 2/(1− p). Moreover, uλ(1) ∼ Aααλ−α, where A = [α(α− 1)]−
1

1−p .

(iv) There exists λ4 > 0 such that problem (1.1) has at least a nonnegative nontrivial
solution vλ for λ > λ4, which is not radial.

Finally, we are treating some features of problem (1.1) when the weight function a(x) is
allowed to vanish in some nonempty subdomain Ω0 of Ω. Observe that the connectedness of
Ω together with a 6≡ 0 entail ∂Ω0 ∩Ω 6= ∅. We are restricting our discussion here to the case
where Ω0 ⊂ Ω is a C2,γ smooth domain such that, defining Γ1 = ∂Ω0 ∩ ∂Ω, Γ2 = ∂Ω0 ∩ Ω,
the following condition holds (cf. [11]):

Γ2 ⊂ Ω. (H)

(H) implies that the part of ∂Ω0 meeting Ω necessarily consists of a closed manifold (Γ2 = Γ2)
entirely contained in Ω, thus lying at positive distance from the remaining part Γ1 of ∂Ω0,
located on ∂Ω. This is a technical hypothesis which provides a convenient smoothness of the
eigenfunctions of the auxiliary problems (1.3) and (1.4) (see the discussion after Remark 3
and Remark 4 (c)). On the other hand, the separation between Γ1 and Γ2 is crucial in the
dead core analysis carried out in Theorem 11.

It turns out that the first eigenvalue σ1 of the problem





∆u = 0 in Ω0

∂u

∂ν
= σu on Γ1

u = 0 on Γ2,

(1.3)

will be determinant in the existence issue of solutions. The main features concerning σ1 were
studied in [11] (cf. Theorem 6). Some of them are recalled in Remarks 4 and Theorem 8
of the present work. In such statement, and for our purposes here, problem (1.3) is further
analyzed in the more ambitious case where (H) fails and Γ1 ∩ Γ2 6= ∅ (i.e., the “genuine”
mixed problem).

To fix the notation we are setting in what follows σ1 = ∞ if Γ1 = ∅, i.e. Ω0 ⊂⊂ Ω. After
these preliminaries, we can state the following result.

Theorem 4. Assume Ω is a C2,γ bounded domain of RN , a ∈ Cγ(Ω) and 0 < p < 1. Then
problem (1.1) possesses the following features:
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(i) Problem (1.1) does not have nonnegative nontrivial solutions when λ ≤ 0. For 0 < λ <
σ1, there always exists a nonnegative nontrivial solution u ∈ C2,γ1(Ω), γ1 = min{p, γ}.

(ii) There exists λ0, 0 < λ0 < σ1 such that for 0 < λ < λ0, problem (1.1) has a unique
classical nonnegative solution uλ. The mapping λ → uλ exhibits the same properties
as in Theorem 1 (ii). In particular

lim
λ→0+

λ
1

1−p uλ =

(
1

|∂Ω|
∫

Ω

a(x)

) 1
1−p

in C2,γ(Ω) and so uλ → +∞ uniformly in Ω as λ → 0+.

(iii) If σ1 = +∞, then there exist positive constants C, K and λ2 such that for all nonneg-
ative nontrivial solutions uλ ∈ C2,γ1(Ω) to (1.1) with λ ≥ λ2 we have

uλ ≤ Cλ−
2

1−p .

In addition u develops a dead core Oλ with {dist(x, ∂Ω) ≥ dλ} ⊂ Oλ where dλ → 0+
as λ → +∞. Moreover, dλ = K/λ, for a constant K > 0, provided a > 0 on Γ1.

An important difference of problem (1.1) in the range 0 < p < 1 with respect to p > 1
arises when λ ≥ σ1. Specifically, it was proved in [11] that no positive solutions of (1.1) with
p > 1 exist when λ ≥ σ1, provided σ1 < +∞ (see Figure 2). We are showing next that this is
indeed the case if Ω+ := {x ∈ Ω : a(x) > 0} ⊂⊂ Ω, but things are quite different otherwise.
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Figure 2. Bifurcation diagrams p > 1 versus 0 < p < 1. In both regimes drawings
for cases σ1 = ∞ and σ1 < ∞ but σ̃1 = ∞ are superposed. The meaning of continuous
and dotted or dashed arcs is the same as in Figure 1.

In explaining the discrepancy when ∂Ω+ ∩ ∂Ω 6= ∅ the eigenvalue problem (1.3) –now
observed in Ω+– has again an important rôle. Let {Ω+

i } be the set of (finitely many)
connected pieces of Ω+. Observe that ∂Ω+ ∩ Ω = ∂Ω0 ∩ Ω = Γ2 (as defined before) and
so Γ2 = ∪i(∂Ω+

i ∩ Ω). Notice again that, due to a 6≡ 0 and the connectedness of Ω each
Γ2,i := ∂Ω+

i ∩ Ω is nonempty. In addition Γ+ := ∂Ω+ ∩ ∂Ω = ∂Ω \ Γ1 = ∪i(∂Ω+
i ∩ ∂Ω). If
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∂Ω+ ∩ ∂Ω 6= ∅ some ∂Ω+
i meets ∂Ω. Precisely for all those components Ω+

i define σ = σ̃1,i

as the first eigenvalue to the problem,





∆u = 0 x ∈ Ω+
i

∂u

∂ν
= σu x ∈ ∂Ω+

i ∩ ∂Ω

u = 0 x ∈ Γ2,i = ∂Ω+
i ∩ Ω.

(1.4)

Designate σ̃1 = min σ̃1,i if ∂Ω+∩∂Ω 6= ∅ setting σ̃1 = +∞ otherwise (i.e. the case ∂Ω = Γ1).
The new features concerning (1.1) in the case a vanishing in Ω are next described.

W
0

G
2

G
2

G
1

W
+

W
+

W

G
+

G
+

Figure 3. A possible configuration for the domains Ω, Ω0, Ω+. In this example, Ω+

possesses two connected pieces

Theorem 5. Assume σ1 < +∞. Then:

(i) If σ̃1 = +∞, then there are no nonnegative nontrivial solutions to (1.1) with λ ≥ σ1.

(ii) If σ̃1 < +∞ and there exists a nonnegative nontrivial solution to (1.1) with λ ≥ σ1,
then λ > σ̃1. In particular, if σ̃1 ≥ σ1, then there are no solutions for λ ∈ [σ1, σ̃1].

(iii) When σ̃1 < +∞, there exists λ2 > 0 such that for λ ≥ λ2 problem (1.1) has at
least a nonnegative nontrivial solution, which develops a dead core Oλ. In this case
{dist(x, Γ+) ≥ dλ} ⊂ Oλ with dλ → 0+ as λ → +∞, Γ+ = ∂Ω+ ∩ ∂Ω. Similarly, the
choice dλ = K/λ, K > 0, is again possible when a > 0 on Γ+.

Remarks 1.

(a) By means of examples it is possible to show that both options σ1 ≤ σ̃1 and σ1 > σ̃1 can
occur. Notice that such relative positions depend only on the support of the weight a, not
on its size. See Remark 8.

(b) Regarding (ii) it is also possible to produce examples where σ̃1 < σ1 and either no solutions
u ≥ 0 (u 6= 0) exist for σ1 ≤ λ ≤ σ1 + ε, or a nonnegative nontrivial solution exists for all
λ ≥ σ1 − ε, ε > 0 small. See also Remark 8.

(c) As already noticed and in contrast with the case p > 1, (1.1) can support nonnegative
nontrivial solutions for λ > σ1, provided σ̃1 < σ1. However, such solutions are “degenerate”
in the sense that they must vanish in Ω0 together with all those (if any) connected pieces
Ω+

i of Ω+ such that Ω+
i ⊂⊂ Ω (cf. Section 7).
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(d) According to (ii)-(iii) the set of solutions to (1.1) undergoes a discontinuity at λ = σ1 to
–roughly speaking– arise again at some λ after σ̃1 (suppose σ1 ≤ σ̃1). It should be remarked
that the latter arising is necessarily “spontaneous” in the sense that when solutions appear
are bounded away from zero. In other words, they are not generated by a bifurcation from
the trivial solution u = 0. See Remark 7.

lll

||u||8

0
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s1

$a 0 ,       0 < p < 1

-s1 2

Figure 4. A bifurcation diagram for the case σ1 < σ̃1 < +∞. Solutions disappear
converging to zero at σ1 and spontaneously appear beyond λ = σ̃1.

Finally, we conclude our analysis by determining the asymptotic behavior of solutions
near λ = σ1 in the critical situation where solutions cease to exist at that value. We assert
that (λ, u) = (σ1, 0) defines in that case a bifurcation point for solutions to (1.1).

Theorem 6. Assume σ1 < +∞, with either σ1 ≤ σ̃1 or σ̃1 = +∞, or even σ̃1 < σ1 but in
this case also supposing that (1.1) has only u = 0 as solution at λ = σ1. Then every family
of nonnegative solutions {uλ} with λ close to σ1 verifies

uλ → 0,

in C2,β(Ω), 0 < β < γ1, as λ → σ1−. In addition, there exists δ > 0 such that every
nonnegative nontrivial solution uλ to (1.1) for σ1 − δ ≤ λ < σ1 develops a dead core Oλ.
More importantly, such dead core must satisfy Oλ ⊂ Ω+ together with Oλ → Ω+ uniformly
as λ → σ1+.

Remark 2. Compared with the case λ ≥ σ1 (Remark 1 (c)) it follows from the preceding
statement that nonnegative solutions to (1.1) with λ < σ1, λ ∼ σ1, exhibit the opposite
behavior in Ω0. Namely, all those solutions are strictly positive in Ω0, aside of converging to
zero as λ → σ1−.

The paper is organized as follows: in Section 2, we state some preliminaries which will be
used in the paper. Section 3 is devoted to existence of nonnegative solutions and uniqueness
for small λ, while in Section 4 the asymptotic behavior as λ → +∞ is elucidated. In Sections
5 and 6 we prove Theorems 2 and 3, respectively. A mixed problem, closely related to (1.1)
is also studied in Section 5 (Theorem 11). Finally, Section 7 deals with problem (1.1) when
the weight a(x) vanishes in a subdomain Ω0 of Ω (Theorems 4, 5 and 6).
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2. Preliminaries

In this section we collect some results which will be needed for the proofs of our theorems.
We begin by proving that weak solutions to (1.1) are indeed classical solutions. It should be
stressed that this result is not contained in [1]. However, as will be seen at once, it can be
proved by means of their estimates.

Lemma 7. Let u ∈ H1(Ω) be a weak nonnegative solution to (1.1). Then u ∈ C2,γ1(Ω),
γ1 = min{γ, p}, and thus defines a classical solution.

Proof. For λ > 0 fixed and µ > 0 large enough, the problem




∆v − µv = f in Ω

∂v

∂ν
= λv on ∂Ω

(2.1)

with f = 0 has u = 0 as the only weak solution in H1(Ω). In fact, any nontrivial solution
u ∈ H1(Ω) to (2.1) with f = 0 defines a weak eigenfunction corresponding to the eigenvalue
σ = λ of the Steklov-type eigenvalue problem:





∆v − µv = 0 in Ω

∂v

∂ν
= σv on ∂Ω.

(2.2)

Techniques in Section 2 of [11] can be used to show that problem (2.2) possesses, for every
µ, a first eigenvalue σ1 = σ1(µ) which is the unique associated to a positive eigenfunction in
H1(Ω) (“a posteriori” in C2,γ(Ω)) and variationally characterized as

σ1 = inf
v∈H1(Ω)\{0}

∫
Ω
{|∇v|2 + µv2}∫

∂Ω
v2

. (2.3)

Moreover, σ1 increases with µ. We claim that σ1 → ∞ as µ → ∞. This implies the
desired assertion if µ is so large as to have λ < σ1(µ). To show the claim suppose that
σ1(n) = O(1) as n →∞. If φn ∈ H1(Ω) stands for the positive eigenfunction corresponding
to σ1(n) normalized so that

∫
∂Ω

φ2
n = 1, then φn remains bounded in H1(Ω) under the norm

|u|2H1 =
∫

Ω
|∇u|2 +

∫
∂Ω

u2. Modulo a subsequence, φn → φ weakly in H1 and by compactness
φn → φ in both L2(Ω) and L2(∂Ω). In particular

∫
∂Ω

φ2 = 1. However, the boundedness of
σ1(n) leads to

∫
Ω

φ2 = 0 which is not possible. Thus the claim is proved.
Since (2.1) can admit at most one classical solution, the results in [14] (Theorem 6.31

and subsequent remark) ensure that such problem has indeed a unique solution v ∈ C2,γ(Ω)
for every f ∈ Cγ(Ω).

Now let u ∈ H1(Ω) be a nonnegative solution to (1.1). By the Sobolev embedding, we
have u, up ∈ Lr(Ω) for every 1 ≤ r ≤ 2∗ = 2N/(N − 2) (this is only true if N ≥ 3; for N = 2
the situation is even better). Take a sequence of Cγ functions fn converging to a(x)up − µu
in Lr(Ω), and let vn be the unique solution to (2.1) with f = fn. We now use the estimates
of Agmon-Douglis-Nirenberg [1]. There exists a constant C > 0 such that

|vn|W 2,r ≤ C|fn|Lr .
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It follows that vn → v in W 2,r(Ω), where v is the (unique) solution to





∆v − µv = a(x)up − µu in Ω

∂v

∂ν
= λv on ∂Ω.

Thus v = u, and so u ∈ W 2,r(Ω). Repeating this argument a finite number of times, we
arrive at u ∈ W 2,q(Ω) for some q > N , and hence u ∈ C1,η(Ω) for a certain 0 < η < 1.

Next we choose a sequence fn ∈ Cγ1(Ω) so that fn → a(x)up−µu in Cγ1(Ω), and denote
by vn the C2,γ1(Ω) solutions to (2.1) corresponding to f = fn. We now use the Schauder
estimates provided by Theorem 6.30 in [14] to obtain

|vn|C2,γ1 ≤ C(|fn|Cγ1 + |vn|Cγ1 ).

From which it similarly follows that vn → u in C2,γ1(Ω), and thus u ∈ C2,γ1(Ω).

Remark 3. Observe that as a consequence of the last part of the proof of Lemma 7 positive
solutions u to (1.1) are slightly more regular and directly lie in C2,γ(Ω), while this is not
necessarily the case if such solutions vanish somewhere in Ω.

We are now introducing an eigenvalue problem under mixed boundary conditions of
Dirichlet and Steklov type, located on zones Γ and Γ′ of the boundary, which will play an
important rôle in some of our forthcoming proofs. Theorem 8 in [11] analyzed this problem
in full detail when the zones carrying different boundary conditions are different –and hence
separated away– components of the boundary, providing class C2,γ eigenfunctions. This is
precisely the more frequently used version in this work. Our next result deals with the more
adverse situation in which Γ and Γ′ meet on a N − 2 dimensional closed manifold γ. Such
scenario will be required for showing the estimate (1.2) in Section 4. Notice that in this case
results in Section 2 of [11] still provide H1 eigenfunctions (see Remark 8 there). However,
their optimal degree of regularity is an issue belonging to the subtle realm of smoothness of
weak solutions to mixed problems (see for instance [15, 16]). Accordingly, we only provide
next the amount of weak smoothness strictly required for our purposes here. Its proof, an
straightforward consequence of Section 2 in [11] and [4], is only sketched.

Theorem 8. Let D ⊂ RN a bounded domain of class C3 such that ∂D = Γ∪Γ′∪γ, Γ, Γ′, γ
pair-wise disjoint, Γ, Γ′ relatively open in ∂D, γ a closed N − 2 dimensional manifold while
Γ ∪ γ and Γ′ ∪ γ define N − 1 dimensional manifolds of class C3 with common boundary γ.
Then the eigenvalue problem 




∆u = 0 in D

∂u

∂ν
= σu on Γ

u = 0 on Γ′,

(2.4)

admits a principal eigenvalue σ1, i. e. an eigenvalue with a one-signed eigenfunction, which
is characterized by:

σ1 = inf
u∈H1

Γ′ (D)

∫
D
|∇u|2∫
Γ
u2

, (2.5)
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where H1
Γ′(D) is the subset of functions of H1(D) which vanish on Γ′. Moreover, σ1 is the

unique principal eigenvalue, simple and the smallest of all eigenvalues. Moreover, every
associated eigenfunction φ verifies φ ∈ H1(D) ∩W 2,q(D) for all q < 4/3.

Sketch of the proof. Observe that H1
Γ′(D) is well defined even if Γ and Γ′ intersect. Consider

M = {u ∈ H1
Γ′(D) :

∫
Γ
u2 = 1} and set J(u) =

∫
D
|∇u|2. Regarding H1

Γ′(D) endowed with

the equivalent norm |u|1 = (
∫

D
|∇u|2)1/2 it follows that J is coercive, i. e. J(un) → +∞

whenever |un|1 → +∞. Since J is also weakly lower semicontinuous and M is weakly closed
the basic result in the calculus of variations (see [20]) provides with a global minimizer
φ ∈ H1

Γ′(D), which is an eigenfunction of (2.4) associated to σ1.
It can be assumed that φ+ = max{φ, 0} 6≡ 0, and hence it is also a minimizer. Thus

φ+ is harmonic in Ω and by the Harnack inequality we have φ+ > 0, hence φ > 0. By an
orthogonality argument it follows that σ1 is simple, and it is the only eigenvalue associated to
a positive eigenfunction. Finally, the extra regularity of the eigenfunction is a consequence
of Theorem B in [4].

Remarks 4.

(a) For λ > 0 designate by Dλ the scaled copy of D, i.e. Dλ = {λx : x ∈ D}. If σ1(Dλ)

stands for the principal eigenvalue of (2.4) in Dλ one directly finds that σ1(Dλ) =
1

λ
σ1(D).

(b) A suitable use of the Lp estimates in [1] proves that every eigenfunction φ associated to
σ1 satisfies φ ∈ C2,η(D ∪ T ), 0 < η < 1 arbitrary, where T is any relatively open part of ∂D
strongly contained either in Γ or Γ′. Thus, as a consequence of Hopf’s maximum principle,

every positive eigenfunction satisfies
∂φ

∂ν
< 0 on Γ′ where ν is the outward unit normal on Γ′.

On the other hand, although not in our framework here, smoothness of such eigenfunctions
φ is enlarged provided Γ and Γ′ meet in a convenient nonsmooth way on γ. For instance,
under a suitable –not too large– angle (cf. [15, 16] and their references). In any case, it
should be recalled that eigenfunctions achieve the full C2,γ regularity assumed that ∂Ω is
only C2,γ when Γ and Γ′ are disjoint closed manifolds (see [11]).

(c) The hypothesis that D is of class C3 is required in [4] for the W 2,q regularity of the
eigenfunctions. On the other hand, the exponent 4/3 for the integrability of the second
derivatives is somehow optimal, as an example in [19] shows.

Finally, we are introducing some results from [12] concerning a singular initial value
problem, which will be needed in Section 6. It should be remarked that such results were
established there for the harder framework of the p-Laplacian operator. As a very special
case of them we consider the Cauchy problem:

{
((r + d)N−1u′)′ = (r + d)N−1up r ∈ (0,∞)

u(0) = 0, u′(0) = 0,
(2.6)

with d ≥ 0, which arises after some normalization when one considers the radial version of
(1.1) with a(x) = 1. As a consequence of Theorems 2.3, 2.5 and 2.6 (see also Corollary 2.4)
in [12] and a globalizing argument, we can state the following theorem.
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Theorem 9. For each d ≥ 0, problem (2.6) has a unique nontrivial solution u(r, d) defined
in [0, +∞), in the sense that u(r, d) > 0 for r > 0. Moreover, u(·, d) → u0(·) as d → ∞ in
C1

loc[0, +∞), where u0(·) is the nontrivial solution to (2.6) corresponding to N = 1, which is
explicitly given by

u0(r) = Arα,

where α = 2/(1 − p) and A = (α(α − 1))−
1

1−p . In addition, u(r, d) is differentiable with
respect to d and verifies

∂u

∂d
(·, d) → 0, as d →∞ (2.7)

in C1
loc[0, +∞).

Remark 5. Notice that problem (2.6) always has the trivial solution u ≡ 0. It follows that
this is the only nonnegative solution when p ≥ 1. However, when 0 < p < 1 there is a
unique positive solution and infinitely many nonnegative (nontrivial) solutions, all of them
expressible in terms of the positive one (cf. Corollary 2.4 in [12]).

3. Existence of nonnegative solutions. Uniqueness for small λ

In this section we are considering the issue of existence of nonnegative nontrivial solutions to
(1.1) when a(x) > 0 in Ω. It will be shown that for every λ > 0 there always exists at least
one solution (while for λ ≤ 0 they cease to exist). In addition, we will show that the solution
is unique provided λ is sufficiently small. In fact, a bifurcation from infinity at λ = 0 takes
place.

Proof of Theorem 1 (i). According to Lemma 7, all weak solutions in H1(Ω) belong to
C2,γ1(Ω). Assume first λ ≤ 0. Integrating the equation (1.1) in Ω:

∫

Ω

a(x)up =

∫

Ω

∆u =

∫

∂Ω

∂u

∂ν
= λ

∫

∂Ω

u ≤ 0,

from which u ≡ 0 follows.
Now assume λ > 0. We use in H1(Ω) the norm |u|2H1 =

∫
Ω
|∇u|2 +

∫
∂Ω

u2 which is
equivalent to the usual one. Define

M :=

{
u ∈ H1(Ω) :

∫

Ω

a(x)|u|p+1 = 1

}

and for u ∈ M the functional

J(u) =

∫

Ω

|∇u|2 − λ

∫

∂Ω

u2.

We claim that J is coercive on M . Indeed, assume on the contrary that there exists a
sequence {un} ⊂ M such that |un|H1 → +∞ and J(un) ≤ C, that is

∫

Ω

|∇un|2 ≤ λ

∫

∂Ω

u2
n + C. (3.1)
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Denoting by tn = |un|L2(∂Ω), it follows from (3.1) that tn → +∞. Letting vn = un/tn, we
obtain again from (3.1) a bound for the H1 norms of vn. Passing to a subsequence, we obtain
vn ⇀ v weakly in H1(Ω), strongly in L2(Ω) and in L2(∂Ω). In particular, |v|L2(∂Ω) = 1. On
the other hand, since p < 1 and un ∈ M , we have that

∫
Ω

a(x)|v|p+1 = 0, and so v = 0, a
contradiction. Thus J is coercive.

Since M is weakly closed, and J is (sequentially) weakly lower semicontinuous, it follows
from standard results that J achieves its minimum in M (see [20]). Also, since J(|u|) = J(u)
and |u| ∈ M whenever u ∈ M , we may assume that the minimum is achieved at a nonnegative
(nontrivial) function u. By the Lagrange’s multipliers rule, there exists µ ∈ R such that

∫

Ω

∇u∇ϕ− λ

∫

∂Ω

uϕ = µ

∫

Ω

a(x)upϕ

for every ϕ ∈ H1(Ω). Taking in particular ϕ = u, we arrive at J(u) = µ < 0, since there
is a constant function which belongs to M for which J is negative. Setting v = |µ|1−pu,
we obtain a nonnegative nontrivial weak solution to (1.1), which is, as remarked earlier, a
classical solution in C2,γ1(Ω).

Remark 6. Nonnegative solutions can also be obtained by applying the Mountain Pass the-
orem to the functional

J̃(u) =
1

2

∫

Ω

|∇u|2 − λ

2

∫

∂Ω

(u+)2 +
1

p + 1

∫

Ω

a(x)|u|p+1,

in H1(Ω), where u+ = max{u, 0} denotes the positive part of u.

We now proceed to show Theorem 1 (ii). The proof makes use of local bifurcation theory.
As a first step in this approach, we begin by characterizing the behavior of all nonnegative
solutions for λ approaching zero.

Lemma 10. Assume λn → 0, and let un be a corresponding sequence of nonnegative non-
trivial solutions to (1.1). Then





λn = µntn

un =
1

tθn
(1 + tnwn)

where θ = 1/(1 − p), tn =
(

1
|∂Ω|

∫
∂Ω

un

)p−1

→ 0, wn ∈ Y := {u ∈ C2,γ(Ω) :
∫

∂Ω
u = 0}.

Moreover,

µn → µ0 =
1

|∂Ω|
∫

Ω

a(x), (3.2)

and wn → w0 in C2,β(Ω) for all 0 < β < γ, where w0 is the unique solution in Y of the
linear equation 




∆w = a(x) in Ω

∂w

∂ν
= µ0 on ∂Ω.

(3.3)
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Proof. First of all, notice that (3.3) has a unique solution in Y , according to the compatibility
condition given by the value of µ0 in (3.2).

We begin by showing that |un|∞ tends to infinity. Assume on the contrary that for a
subsequence (still labelled by un) there holds |un|∞ ≤ C. Observing that problem (2.1)
corresponding to µ = 0 has a unique solution for λ small and by employing the Agmon-
Douglis-Nirenberg estimates (see [1]), we have for every q > 1

|un|W 2,q ≤ C1(|un|Lq + |up
n|Lq) ≤ C2, (3.4)

C1 > 0 being certain constant depending on q. Selecting q > N , we have by the Sobolev
imbedding (passing to a subsequence) that un → u in C1,η(Ω) for some 0 < η < 1. It follows
that u is a nonnegative weak (hence classical by Lemma 7) solution to (1.1) with λ = 0.
Thus, u ≡ 0 (in particular, un → 0 in H1(Ω)). We claim that this is impossible. Indeed, let
vn = un/|un|H1 . There exists a subsequence (labelled once more by vn) such that vn ⇀ v
weakly in H1(Ω), strongly in L2(Ω), in L2(∂Ω) and almost everywhere in Ω. It follows from
(1.1) that ∫

Ω

|∇vn|2 = λn

∫

∂Ω

v2
n − |un|p−1

H1

∫

Ω

a(x)vp+1
n ≤ λn

∫

∂Ω

v2
n → 0,

so by lower semicontinuity we deduce that v is a constant. As a consequence, it follows that
vn → v strongly in H1(Ω). On the other hand, again by (1.1), we have that

|un|p−1
H1

∫

Ω

a(x)vp+1
n = λn

∫

∂Ω

v2
n −

∫

Ω

|∇vn|2 → 0,

and since 0 < p < 1, we deduce ∫

Ω

a(x)vp+1
n → 0. (3.5)

Now since vn → v in L2(Ω), we have vn → v in Lp+1(Ω), and thus v = 0 in Ω, contradicting
that |vn|H1 = 1. Thus |un|∞ → +∞.

Setting again vn = un/|un|∞, and recalling that vn satisfies





∆vn = a(x)vp
n|un|p−1

∞ in Ω

∂vn

∂ν
= λnvn on ∂Ω,

we obtain arguing as before an estimate like (3.4), getting thus a bound in C1,η(Ω) for the
solutions vn for some 0 < η < 1. Applying Theorem 6.30 in [14] gives C2,γ1(Ω) bounds, and
thus vn → v in C2,β(Ω), 0 < β < γ1, where v is a unique classical solution to





∆v = 0 in Ω

∂v

∂ν
= 0 on ∂Ω,

with |v|∞ = 1. Hence v ≡ 1. Since vn becomes positive for large n we furthermore find that
vn ∈ C2,γ(Ω) (Remark 3) and vn → 1 in C2,β(Ω) for all 0 < β < γ.
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We now split un = cn + cnzn, where cn = 1
|∂Ω|

∫
∂Ω

un and zn ∈ Y . It follows that

cn

|un|∞ → 1 and zn → 0 in C2,β(Ω).

Next, notice that zn solves





∆zn = a(x)cp−1
n (1 + zn)p in Ω

∂zn

∂ν
= λn(1 + zn) on ∂Ω.

(3.6)

By integrating in (3.6) we obtain:

∫

Ω

a(x)(1 + zn)p = λnc1−p
n |∂Ω|.

Setting tn = cp−1
n this means that λn = tnµn where µn → µ0, µ0 given by (3.2). Next, using

that λn = O(tn) and from Schauder’s estimates we conclude that zn = O(tn) in C2,γ(Ω).
Writing zn = tnwn with wn bounded in C2,γ(Ω) we conclude that wn → w0 in C2,β(Ω), w0

being the unique classical solution in Y to (3.3). This proves the lemma.

Proof of Theorem 1 (ii). According to Lemma 10, all nonnegative nontrivial solutions to
(1.1) for small λ are of the form:





λ = tµ

u =
1

tθ
(1 + tw)

where t > 0 is small and (µ,w) ∈ R× Y is close to (µ0, w0), µ0 ∈ R, w0 ∈ Y given by (3.2)
and (3.3) respectively. Thus, for small λ > 0 solving (1.1) is equivalent to solving:





∆w = a(x)(1 + tw)p in Ω

∂w

∂ν
= µ(1 + tw) on ∂Ω,

(3.7)

together with the compatibility condition:

∫

Ω

a(x)(1 + tw)p = µ

∫

∂Ω

(1 + tw), (3.8)

for |t|, |µ− µ0| and |w − w0|Y small, where Y = {u ∈ C2,γ(Ω) :
∫

∂Ω
u = 0} is endowed with

its natural norm.
We are accordingly showing such uniqueness by means of the Implicit Function theorem

as follows. Setting X = Cγ(Ω)× C1,γ(Ω), define l ∈ X∗ as:

l(f, g) =

∫

Ω

f −
∫

∂Ω

g, (f, g) ∈ X.
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According to Schauder’s theory, for each (f, g) ∈ ker(l) the problem:





∆u = f x ∈ Ω

∂u

∂ν
= g x ∈ ∂Ω,

has a unique solution u ∈ Y , denoted u = K(f, g). Hence, K : ker(l) → Y defines a linear

topological isomorphism. Observe in addition that (f, g) 7→ (f, g +
1

|∂Ω| l(f, g)) defines a

projection from X onto ker(l). Thus K is always defined at (f, g +
1

|∂Ω| l(f, g)) for every

(f, g) ∈ X.

Now introduce the Nemytskii operators F (t, w) = a(1+ tw)p, G(t, w) = 1+ tw. For small
and positive ε, δ, F : (−ε, ε) × BY (w0, δ) → Cγ(Ω), and G : (−ε, ε) × BY (w0, δ) → C1,γ(Ω)
define real analytic mappings, BY (w0, δ) standing for the open ball in Y with radius δ and
center w0. Thus,

F : (−ε, ε)× (µ0 − ε, µ0 + ε)×BY (w0, δ) −→ R× Y
(t, µ, w) −→ (F1(t, µ, w),F2(t, µ, w),

where

F1(t, µ, w) = l(F (t, w), µG(t, w)),

and

F2(t, µ, w) = w −K(F (t, w), µG(t, w) +
1

|∂Ω|F1(t, µ, w))

is also a real analytic mapping.

On the other hand, solving (3.7), (3.8) for (t, µ, w) close to (0, µ0, w0) in R2 × Y is
equivalent to solving:

F(t, µ, w) = 0, (3.9)

with (t, µ, w) ∈ (−ε, ε) × (µ0 − ε, µ0 + ε) × B(w0, δ) with ε, δ small enough. However,
F(0, µ0, w0) = 0, while

F1(0, µ, w) = |∂Ω|(µ0 − µ),

and,

F2(0, µ, w) = w −K(a, µ0) = w − w0,

Thus, the Fréchet derivative L acting on (µ̂, ŵ) ∈ R× Y is given by

L(µ̂, û) = D(µ,w)F(0, µ0, w0)(µ̂, ŵ) = (−|∂Ω|µ̂, ŵ).

Since L defines an isomorphism from R×Y into itself, the real analytic version of the Implicit
Function theorem ([5]) ensures that (3.9) is uniquely solvable with µ(t), w(t, ·) real analytic
in t and λ = tµ(t), u = t−θ(1 + tw(t, ·)) define the unique nonnegative solutions to (1.1) for
small λ > 0. The remaining assertions in (ii) follow from this representation.
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4. Behavior for large λ

In this section, we study the properties of the nonnegative nontrivial solutions to (1.1) for
large positive λ, assuming a(x) > 0 in Ω.

Proof of Theorem 1 (iii). We are using the well-known blow-up technique of Gidas and
Spruck (see [13]). Assume that (1.2) does not hold. Let λn → +∞ and un be a sequence of
corresponding nonnegative nontrivial solutions to (1.1), such that

λ
2

1−p
n Mn → +∞ (4.1)

as n → +∞, where Mn := maxΩ un. Choose points x̃n ∈ ∂Ω such that un(x̃n) = Mn (notice
that the functions un are subharmonic), and assume (extracting a subsequence if necessary)
that x̃n → x̃0 ∈ ∂Ω. By means of a translation and a rotation, it can be assumed that
x̃0 = 0 while {xN = 0} defines the tangent hyperplane to ∂Ω at such point. By hypothesis,
there exist R > 0 and ϕ ∈ C2,γ(B(0, R) ∩ {xN = 0}), ϕ(0) = 0, ∇ϕ(0) = 0 such that by
writing x ∈ Rn as x = (x′, xN), x′ = (x1, . . . , xN−1) then Ω ∩ B(0, R) = {x : xN > ϕ(x′)}
and ∂Ω ∩ B(0, R) = {x : xN = ϕ(x′)}. Then, the standard C2,γ diffeomorphism y = h(x)
given by y′ = x′, yN = xN − ϕ(x′) maps B(0, R) onto a neighborhood V of y = 0 in RN ,
Ω ∩B(0, R) onto V + = V ∩RN

+ , ∂Ω ∩B(0, R) onto V ∩ ∂RN
+ . Problem (1.1) in Ω ∩B(0, R)

is transformed in:





∆u +
N−1∑
i=1

ai(y)
∂2u

∂yi∂yN

+ |∇ϕ(y′)|2 ∂2u

∂y2
N

+ b(y)
∂u

∂yN

= a(y)up y ∈ V +

∇u · ν1(y) = λu y ∈ V ∩ ∂RN
+ ,

(4.2)

with

ai = −2
∂ϕ

∂xi

, b(y) = −∆ϕ, ν1 = (ν ′,−ν ′∇ϕ + νn),

ν(x) = (ν ′(x), νN(x)) the outer unit normal on ∂Ω, all such functions being evaluated at
x = h−1(y).

On the other hand, setting ỹn = h(x̃n) then ỹn → 0 and a positive R1, not depending on

n, can be found so that the translations wn(y) = un(y + ỹn) are all defined in B(0, R1)∩RN
+ .

Setting U = B(0, R1) ∩ RN
+ , Un = λnU and performing the change

vn(y) = M−1
n un(λ−1

n y + ỹn),

the functions vn define solutions to:





∆v +
N−1∑
i=1

ai,n(y)
∂2v

∂yi∂yN

+ aN,n(y)
∂2v

∂y2
N

+ λ−1
n bn(y)

∂v

∂yN

= λ−2
n Mp−1

n an(y)vp y ∈ U+
n

∇v · ν1,n(y) = λv y ∈ Un ∩ ∂RN
+ ,

(4.3)
where ai,n(y) = ai(λ

−1
n y + ỹn), 1 ≤ i ≤ N − 1, aN,n(y) = |∇ϕ(λ−1

n y′ + ỹ′n)|2, bn(y) =
b(λ−1

n y + ỹn), an(y) = a(λ−1
n y + ỹn), ν1,n(y) = ν1(λ

−1
n y + ỹn).
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Observe that Un → RN
+ , Un → RN

+ . Since |vn|∞,Un = 1 for all n, then the interior version
of the Lp and Schauder estimates imply that (modulo a subsequence) vn → v in C2,β(RN

+ ) for
all 0 < β < γ1. Moreover, by employing the “up to the boundary” version of such estimates
in the region B(0, R2) ∩ RN

+ , R2 > 0 arbitrary and n large, leads to the validity of such

convergence in C2,β
loc (RN

+ ). That is why v defines a nonnegative solution to:





∆v = 0 x ∈ RN
+

− ∂v

∂yN

= v x ∈ ∂RN
+ ,

(4.4)

such that 0 ≤ v ≤ 1, v(0) = 1. We are now showing that this is impossible. Consider in
fact a C3 bounded subdomain D of RN

+ such that Γ := ∂D ∩ ∂RN
+ = B(0, 1) ∩ ∂RN

+ , and set
Γ′ = ∂D ∩ RN

+ . Define as Dn the magnified version Dn = nD of D, Γn = nΓ, Γ′n = nΓ′.
According to Theorem 8 the eigenvalue problem





∆u = 0 x ∈ Dn

− ∂u

∂yN

= σu x ∈ Γn

u = 0 x ∈ Γ′n,

(4.5)

admits a first eigenvalue σ = σ1,n with a positive associated eigenfunction φn ∈ H1(Dn) ∩
W 2,q(Dn)∩C2,γ(Dn ∪ T ), for all 1 < q < 4/3 and any closed T ⊂ B(0, n)∩ ∂RN

+ . Moreover,
σ1,n → 0 (Remark 4, (a)).

Multiplying the equation in (4.4) by φn, integrating and taking into account Remark 4,
(b) gives

0 = (1− σn)

∫

Γn

vφn −
∫

Γ′n

v
∂φn

∂ν
≥ (1− σn)

∫

Γn

vφn,

which is not possible provided n is large.
In conclusion, (4.1) can not hold, and this proves the theorem.

As a corollary, we obtain that solutions uλ to (1.1) develop a dead core Oλ = {x ∈ Ω :
uλ(x) = 0} as λ grows. It turns out that this dead core covers Ω with a speed that can be
estimated if a > 0 on ∂Ω. For the sake of completeness, we are next providing a direct proof
of these facts (see also [3] and [9]).

Proof of Theorem 1 (iv). Let us begin with the case a > 0 on ∂Ω. Choose x ∈ Ω arbitrary
and let a0 > 0 be the infimum of a(x) in Ω. For y ∈ B (the unit ball), define

v(y) = d(x)−αa
− 1

1−p

0 u(x + d(x)y),

where α = 2/(1 − p). Then v satisfies ∆v ≥ vp in B, v ≤ ε := Ca
− 1

1−p

0 (d(x)λ)−α on ∂B. It
follows that v ≤ z, which is the unique solution to the Dirichlet problem:

{
∆z = zp in B
z = ε on ∂B.

(4.6)
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On the other hand, it can be directly checked that the radial function

z̄(r) =

{
0, r ≤ θ
AN(r − θ)α θ < r < 1

with r = |x|, AN = [α(α + N − 2)]−1/(1−p) (the value A in Theorem 3 (iii) corresponds
to AN with N = 1), θ = 1 − (ε/AN)1/α, defines a supersolution to (4.6) which equals
ε at r = 1. Since z = 0 is a comparable subsolution it follows by the method of sub
and supersolutions (cf. [2]) and the uniqueness of solutions to (4.6) that u vanishes in
{x ∈ Ω : dist(x, ∂Ω) ≥ (ε/AN)1/α = Kλ−1}. The last assertion in (iv) is thus proved.

For the general case one repeats the argument by replacing above d(x) with d(x)/2 and
a0 with the minimum of a in {y ∈ Ω : dist(y, ∂Ω) ≥ d(x)/2} to prove that Oλ 6= ∅. Then it
suffices with observing that u = 0 in {d(y) ≥ δ} provided u = 0 on {d(y) = δ}. This finishes
the proof.

5. Multiplicity

The fact that solutions develop a dead core leads to a fail in uniqueness of nonnegative
solutions for large λ. Indeed, we are proving in this section that for domains Ω with boundary
consisting in more than one connected piece, nonnegative solutions are not unique.

The proof of this fact relies in constructing solutions whose support for large λ is con-
centrated near a prefixed connected piece of the boundary. To succeed in this proposal we
need to study the following auxiliary version of problem (1.1).

Theorem 11. Let Ω ⊂ RN be a class C2,γ bounded domain with ∂Ω = Γ∪Γ′, Γ, Γ′ nonempty
and verifying Γ ∩ Γ

′
= ∅, while a ∈ Cγ(Ω), a(x) > 0 for each x ∈ Ω. Then, the boundary

value problem, 



∆u = a(x)up x ∈ Ω

∂u

∂ν
= λu x ∈ Γ

u = 0 x ∈ Γ′

(5.1)

satisfies the following properties:

(i) Nontrivial and nonnegative solutions to (5.1) are only possible if λ > σ1, σ1 the prin-
cipal eigenvalue of (2.4). In addition, (5.1) admits a nonnegative nontrivial solution
u ∈ C2,γ1(Ω), γ1 = min{γ, p}, for each λ > σ1.

(ii) There exists λ1 > σ1 such that (5.1) admits a unique positive solution uλ ∈ C2,γ1(Ω)
for each σ1 < λ < λ1 where the mapping λ → uλ as attaining values in C2,γ1(Ω) is real
analytic and,

uλ =

(
µ̃0

λ− σ1

) 1
1−p

(φ1 +
1

µ̃0

w(·, λ)(λ− σ1)) , (5.2)
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where φ1 is a positive normalized eigenfunction associated to σ1, w ∈ C2,γ1(Ω), w|Γ′ =

0,
∫

Ω
wφ1 = 0, w = w0 at λ = σ1, with µ̃0 =

∫
Ω

a(x)φp+1
1∫

Γ′ φ
2
1

and w0 ∈ C2,γ1(Ω) is the

unique solution to the problem





∆w = a(x)φp
1 x ∈ Ω

∂w

∂ν
= σ1w + µ̃0φ1 x ∈ Γ

w = 0 x ∈ Γ′.

There exist positive constants λ2, C such that every nonnegative solution u satisfies

u ≤ Cλ−
2

1−p , (5.3)

for λ ≥ λ2. In addition every nonnegative nontrivial solution uλ to (5.1) for λ ≥ λ2

exhibits a dead core Oλ = {uλ(x) = 0}. Moreover, its support concentrates near Γ as
λ → ∞ in the sense that {x : dist (x, Γ) ≥ dλ} ⊂ Oλ where dλ → 0+ as λ → +∞.
Again, dλ = K/λ, K > 0, if a > 0 on Γ.

Proof. Concerning (i) we first observe that the conclusions of Lemma 7 also hold true
for weak solutions u ∈ HΓ′(Ω) = {u ∈ H1(Ω) : u|Γ′ = 0} to (5.1). Accordingly, any
nonnegative solution u 6= 0 does not vanish identically on Γ. Since such solution satisfies∫
Ω
|∇u|2 < λ

∫
Γ
u2 one gets from (2.5) that λ > σ1.

The existence of a nonnegative nontrivial solution for λ > σ1 follows as in Theorem 1 by
minimizing the functional

J(u) =

∫

Ω

|∇u|2 − λ

∫

∂Ω

u2

in the set M = {u ∈ H1
Γ′(Ω) :

∫
Ω

a(x)|u|p+1 = 1}. The crucial point now is that J is negative
at the infimum only when λ > σ1 (otherwise, J ≥ 0 and the infimum is attained at u = 0).

As for (iii) observe that the proof of the estimate uλ ≤ Cλ−
2

1−p does not require any
change regarding the corresponding one in the case of Theorem 1 since the maximum of uλ

must necessarily be attained on Γ. Therefore and by the same arguments as in Section 4, the
support of uλ for large λ is contained in the set {dist (x, ∂Ω) < dλ} with dλ → 0+. However,
we further assert that the support of uλ is indeed contained in {dist (x, Γ) < dλ}. In fact,
notice that uλ verifies ∆u ≥ 0 in D = {0 < dist (x, Γ′) < dλ}, together with uλ = 0 on ∂D
and so uλ = 0 in D. Hence, the support of uλ has to be contained in {dist (x, Γ) < dλ}.

To finish we sketch the proof of (ii). To begin with, it can be shown by a similar reasoning
as in Lemma 10 that any possible sequence (λn, un) of nonnegative nontrivial solutions to
(5.1) with λn → σ1+ satisfies |un|∞ →∞ and can be written as:

λn = σ1 + µ̃ntn, un = t
1

1−p
n (φ1 + tnw̃n)

where µ̃n → µ̃0, tn ∼ |un|p−1
∞ → 0+, w̃n → w̃0 in C2,β(Ω) for every 0 < β < γ1 where µ̃0,

w̃0 ∈ C2,γ1(Ω) are given in the statement of the theorem.
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On the other hand, for λ close to σ1 and by writing solutions (λ, u) as λ = σ1 + µt,
u = t−1/(1−p)(φ1 + tw) with t ∼ 0, µ ∼ µ̃0 and w close to w̃0 in the space Z := {u ∈
C2,γ1(Ω) : u|Γ′ = 0,

∫
Ω

uφ1 = 0}, problem (5.1) is transformed into,





∆w = a(x)(φ1 + tw)p x ∈ Ω

∂w

∂ν
− σ1w = µ(φ1 + tw) x ∈ Γ

w = 0 x ∈ Γ′.

(5.4)

Taking into account that the linear problem ∆u = f in Ω,
∂u

∂ν
− σ1u = g on Γ, u|Γ′ = 0

is uniquely solvable in Z for (f, g) ∈ X := Cγ1(Ω) × C1,γ1(Ω) provided l̃(f, g) :=
∫
Ω

φ1 −∫
Γ′ gφ1 = 0 (cf. the Proof of Lemma 10) then the corresponding solution operator u =

K1(f, g) defines an isomorphism K1 : ker l̃ → Z. By observing that (f, g) → (f, g +
l̃(f, g)∫

Γ
φ1

)

defines a projection from X onto ker l̃, solving (5.4) in (t, µ, w) close to (0, µ̃0, w̃0) in R2×Z
amounts to solving the equation,

H(t, µ, w) = 0, (5.5)

with H = (H1,H2), H1(t, µ, w) = l̃(F (t, µ, w), µG(t, w)), F = a(φ1 + tw)p, G = φ1 + tw, and

H2(t, µ, w) = w −K1

(
F (t, µ, w), µG(t, w) +

(H1(t, µ, w)∫
Γ
φ1

)
.

That (5.5) is uniquely solved in (−ε, ε)×(µ̃0−ε, µ̃0 +ε)×BZ(w̃0, δ) for ε, δ > 0 small follows
again from the Implicit Function theorem. As a preliminary checking of regularity observe
that F defines a real analytic Nemytskii operator near (t, µ̃0, w̃0) in R2 × Z with values in
Cγ1(Ω). In this regard F must be written as

F (t, µ, w) = a(x)φp
1

(
1 + t

w

φ1

)p

,

and keep t small for w ∈ BZ(w̃0, δ). By using that both φ1, w vanish at Γ′ and the fact that
∂φ1

∂ν
< 0 on Γ′ it follows that the mapping w → w

φ1

from Z to C1(Ω) defines a bounded

linear operator. This finishes the proof.

Remark 7. By an argument similar to the one used in the beginning of the proof of Lemma 10
it can be shown that any sequence of solutions (λn, uλn) to (5.1) is bounded in L∞ provided
λn does not accumulate at λ = σ̃1. It is also shown by the same means that no sequence
can exhibit a subsequence (λn′ , uλn′ ) with λn′ → λ ∈ (σ̃1, +∞) and uλn′ → 0 in H1

Γ′(Ω
+). In

particular, (5.1) does not admit (λ, u) = (λ, 0) as a bifurcation point to nonnegative solutions
for any λ > σ̃1.

The next statement deals with a fixed component Γi of ∂Ω. It is an immediate conse-
quence of applying Theorem 11 to Ω under the choice Γ = Γi, Γ′ = ∂Ω \Γi for the boundary
conditions.
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Corollary 12. Let Γi be any fixed connected component of ∂Ω. Then for large λ problem
(1.1) has at least a nonnegative nontrivial solution u such that u = 0 in {dist(x, Γi) ≥ dλ},
dλ → 0 as λ → +∞. The rate of convergence dλ can be chosen as K/λ for certain K > 0 if
a > 0 on Γi.

We can now proceed to the proof of Theorem 2.

Proof of Theorem 2. If Γ1, . . . , Γk are the connected components of ∂Ω then Corollary 12
implies the existence of k nonnegative nontrivial solutions uλ,i whose support is localized
near Γi for large λ. The supports will indeed be disjoint for large λ. This allows us to
conclude that every sum of the form uλ,i1 + . . .+uλ,ir is again a solution to (1.1). Since there
are 2k − 1 such sums, we have shown that there exist at least 2k − 1 different nonnegative
nontrivial solutions to (1.1) for large λ.

6. The case of the ball

In this section we are considering a special case of problem (1.1) by analyzing its behavior
in the unit ball B of RN . To simplify the exposition we are focussing our interest in the au-
tonomous case represented by the coefficient a(x) = 1. We begin our treatment by searching
only for nonnegative radially symmetric solutions u = u(r), r = |x|. They satisfy

{
(rN−1u′)′ = rN−1up 0 ≤ r < 1

u′(0) = 0, u′(1) = λu(1).
(6.1)

The scaling v(r) = λαu(λ−1r), α = 2/(1− p), transforms this problem into,

{
(rN−1v′)′ = rN−1vp 0 ≤ r < λ

v′(0) = 0, v′(λ) = v(λ).
(6.2)

Modifying the proof of point (i) in Theorem 1 by both restricting J and M to the class
of radial functions in H1(B), one can show the existence of a nontrivial nonnegative radial
solution to (1.1) for all λ > 0, hence the equivalent assertion for problem (6.1), which is
point (i) in Theorem 3. On the other hand, it has been already shown (Theorem 1 (iv))
that all nonnegative solutions exhibit a dead core for large λ which completely fills B as
λ → +∞. This implies the existence of d = d(λ) > 0, λ − K ≤ d < λ and so d → ∞ as
λ →∞, such that any nonnegative and nontrivial solution v to (6.2) satisfies v = 0 in [0, d],
v > 0 in (d, λ]. Therefore, setting w(r) = v(d + r), w defines a solution to

{
((r + d)N−1w′)′ = (r + d)N−1wp 0 ≤ r < λ− d

w(0) = 0, w′(0) = 0, w′(λ− d) = w(λ− d).
(6.3)

Such solution is nontrivial in the sense that w(r) > 0 for r ∈ (0, λ−d) (observe that solutions
to (2.6) are nontrivial, see Section 2).

Exploiting these remarks we are now showing items (ii) and (iii) in Theorem 3 (compare
with the proof of Theorem 3.4 in [12]).
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Proof of Theorem 3 (ii) and (iii). To prove (ii) notice that the uniqueness assertion in
Theorem 1 (ii) furnishes a unique radial positive solution uλ for 0 < λ < λ0 satisfying the
properties stated there.

To show the uniqueness for large λ, consider the Cauchy problem
{

((r + d)N−1w′)′ = (r + d)N−1wp in (0, δ)

w(0) = 0, w′(0) = 0
(6.4)

which, by Theorem 9, has a unique nontrivial solution w(r, d) in [0, +∞) for every d ≥ 0.
Moreover, as d → +∞, w converges in C1

loc[0, +∞) to w0(r) = Arα, where A and α are as
in the statement of the theorem.

By the preceding discussion, showing the uniqueness amounts to prove the existence as
d →∞ of a unique positive zero r = T of the equation,

w′(r, d)− w(r, d) = 0, (6.5)

such that T = O(1) while T + d = λ is uniquely solvable in d as d →∞.
The solvability with uniqueness of (6.5) for d large follows from the fact that the limit

equation w′
0(r) − w0(r) = 0 has r = α as a unique simple zero. In fact observe that

w′′
0(α)− w′

0(α) = −Aαα−1. Thus (6.5) admits a root T (d) such that T (d) → α as d → +∞.
We now claim that T (d) is a C1 function for large d and verifies T ′(d) → 0 as d → +∞.

This is a consequence of the Implicit Function theorem, by first noticing that w(r, d) is C1

in both variables (Theorem 9), while in addition

T ′(d) =
wd(T (d), d)− w′

d(T (d), d)

w′′(T (d), d)− w′(T (d), d)

(the subscript d denotes derivation with respect to d and ′ stands for the derivative with
respect to r). As already seen, the denominator is negative for large d since it converges to
w′′

0(α)−w′
0(α) = −Aαα−1, while the numerator tends to zero thanks to (2.7) in Theorem 9.

This proves the claim.
Finally, notice that solutions to (6.3) arise whenever there is a solution to the equation

d + T (d) = λ. Since d + T (d) is increasing for large d, it follows that for large λ there is a
unique d = d(λ) so that w(r, d) is a solution to (6.3). The unique solution to (6.1) for large
λ is then obtained by setting

uλ(r) :=





0 if 0 ≤ r ≤ d

λ

λ−αw(λr − d) if r >
d

λ
.

(6.6)

This proves part (ii).
Part (iii) follows at once by noticing that w(T (d), d) → w0(α) = Aαα and r(λ) =

d(λ)/λ = 1− T (d(λ))/λ ∼ 1− α/λ.

Corollary 13. Let uλ be the unique nonnegative nontrivial radial solution to (1.1) for large
λ. Then ∫

B

up+1
λ ∼ ωNAp+1 αα(p+1)+1

α(p + 1) + 1
λ−α(p+1)−1, as λ → +∞,

where ωN is the surface measure of the unit ball of RN , and A, α are given in Theorem 3.
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Proof. According to (6.6), we have

∫

B

up+1
λ = ωNλ−α(p+1)

∫ 1

d
λ

rN−1w(λr − d)p+1dr

= ωNλ−α(p+1)−1

∫ λ−d

0

(
s + d

λ

)N−1

w(s)p+1ds

∼ ωNλ−α(p+1)−1

∫ α

0

w0(s)
p+1ds = ωNAp+1 αα(p+1)+1

α(p + 1) + 1
λ−α(p+1)−1,

as λ →∞.

Of course one could ask the question whether there are nonradial solutions, or if the
radial one is the unique one. Since ∂B is connected we can not obtain multiplicity as in
Section 5. However, we prove next that besides the radial solution there is indeed another
nontrivial nonnegative and nonradial solution for large λ.

Proof of Theorem 3 (iv). We are showing that the solution constructed in Theorem 1 (i) is
not the radial one. Denote, as in that theorem,

J(u) =

∫

B

|∇u|2 − λ

∫

∂B

u2, u ∈ M =

{
u ∈ H1(B) :

∫

B

|u|p+1 = 1

}
.

For the radial solution uλ we have

J(uλ) = −
∫

B

up+1
λ ,

so that vλ = uλ/|uλ|Lp+1 ∈ M verifies J(vλ) = −|uλ|
− 1−p

1+p

Lp+1 . Then by Corollary 13, there exists
a positive constant C so that

J(vλ) ∼ −Cλ
p+3
p+1 , as λ → +∞. (6.7)

We are next using (6.7) to prove that J(vλ) is not the minimum of J in M for large λ. For
this aim, we construct a family of functions ψλ ∈ M so that J(ψλ) < J(vλ) for large λ.

We first claim that a large radius R > 0 and a function ψ ∈ C∞
0 (BR), BR = B(0, R), can

be found so that ∫

B+
R

|∇ψ|2 −
∫

ΓR

ψ2 < 0, (6.8)

where B+
R = BR ∩ RN

+ , ΓR = BR ∩ ∂RN
+ .

Assumed the existence of such ψ set ψλ(x) = C(λ)ψ(λ(x + e1)) ∈ C∞
0 (B(−eN , λ−1R)),

which belongs to M provided C(λ) = Kλ
N

p+1 , where K−1 = |ψ|p+1,BR
. With this choice of

ψλ:

J(ψλ) = K2λ
2N
p+1

+2−N

(∫

BR∩B(λeN ,λ)

|∇ψ|2 −
∫

BR∩∂B(λeN ,λ)

ψ2

)

∼ K2λ
1−p
1+p

N+2

(∫

B+
R

|∇ψ|2 −
∫

ΓR

ψ2

)
.
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Since (1 − p)N/(1 + p) + 2 > (p + 3)(p + 1), we obtain in virtue of (6.7) and (6.8), that
J(ψλ) < J(vλ) for large λ. As remarked before, this entails the existence of a nontrivial
nonnegative and nonradial solution to (1.1).

To show the claim let φ ∈ H1(B+
R) be a positive eigenfunction to,





∆u = 0 x ∈ B+
R

− ∂u

∂xN

= σu x ∈ ΓR

u = 0 x ∈ Γ′R

(6.9)

corresponding to the principal eigenvalue σ = σ1(R) (Theorem 6 and Remark 8 in [11]).
Provided R is big enough so that σ1(R) < 1 (Remark 4 (a)) φ satisfies:

∫

B+
R

|∇φ|2 −
∫

ΓR

φ2 = (σ1(R)− 1)

∫

ΓR

φ2 < 0.

The searched function ψ can be now obtained from φ by regularization. This concludes the
proof.

7. Vanishing weights

In this final section, we give the proof of Theorems 4, 5 and 6, considering in problem (1.1)
a weight a(x) that vanishes in a subdomain of Ω.

Proof of Theorem 4. We only sketch the proof of part (i), the remaining points being proved
in exactly the same way as in Theorem 1 (ii), (iii) and (iv). If u is a nonnegative solution to
(1.1) with λ ≤ 0 (which, due to Lemma 7 can be supposed in C2,γ1(Ω)), we deduce

∫

Ω

a(x)up = 0,

and so u = 0 in Ω \ Ω0. Thus u verifies





∆u = 0 in Ω0

∂u

∂ν
= λu on Γ1

u = 0 on Γ2,

and it follows from the maximum principle that u = 0 in Ω0 as well. Hence, u ≡ 0.
Assume now 0 < λ < σ1. If the functional

J(u) =

∫

Ω

|∇u|2 − λ

∫

∂Ω

u2

were not coercive in M := {u ∈ H1(Ω) :
∫
Ω

a(x)|u|p+1 = 1}, then we would obtain (proceed-
ing as in the proof of Theorem 1 (i)) a function v ∈ H1(Ω) with |v|L2(∂Ω) = 1 and satisfying
the relations ∫

Ω

|∇v|2 ≤ λ ,

∫

Ω

a(x)|v|p+1 = 0.
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The last one implies v = 0 in Ω\Ω0 (in particular on Γ2). If σ1 = +∞ it follows v = 0 on ∂Ω
what is impossible. If, on the contrary, σ1 < ∞ then (2.5) yields σ1 ≤ λ, also a contradiction.
Hence J is coercive and there exists a nonnegative nontrivial solution to (1.1).

Lemma 14. Assume σ1 < +∞, and let u ∈ C2,γ(Ω) be a nonnegative solution to (1.1) with
λ ≥ σ1. Then u ≡ 0 in Ω0.

Proof. Multiplying (1.1) by the eigenfunction φ1 associated to σ1 and integrating in Ω0

(notice that φ1 ∈ C2,γ(Ω), u ∈ C2,γ1(Ω)), we obtain

(λ− σ1)

∫

Γ1

uφ1 =

∫

Γ2

u
∂φ1

∂ν
. (7.1)

If λ > σ1, we directly obtain u = 0 on Γ1 ∪ Γ2 = ∂Ω0, and since ∆u = 0 in Ω0, u ≡ 0 in Ω0

follows.
If λ = σ1, then we have from (7.1) that u = 0 on Γ2. Thus, u is an eigenfunction associated

to σ1, and the simplicity of σ1 ([11], Theorem 6) implies u = cφ for some nonnegative constant
c. If c > 0, then ∂u

∂ν
< 0 on Γ2, which would imply that u changes sign in Ω. Thus c = 0 and

we arrive again at u ≡ 0 in Ω0. This completes the proof.

Proof of Theorem 5. To show (i), recall that σ̃1 = +∞ is equivalent to Γ1 = ∂Ω. Since
by Lemma 14 we have u = 0 on Γ1 for every nonnegative solution u with λ ≥ σ1 and u is
subharmonic, we arrive at u = 0 in Ω.

As for (ii), suppose u is a nonnegative nontrivial solution corresponding to λ ≥ σ1. By
Lemma 14, u ≡ 0 in Ω0 which implies u = 0 on Γ1∪Γ2. Since ∂Ω+∩Ω = Γ2, then u satisfies:





∆u = a(x)up x ∈ Ω+
i

∂u

∂ν
= λu x ∈ ∂Ω+

i ∩ ∂Ω

u = 0 x ∈ ∂Ω+
i ∩ Ω,

(7.2)

for each component Ω+
i having ∂Ω+

i ∩ ∂Ω 6= ∅. Observe that u = 0 in the remaining
components Ω+

j ⊂⊂ Ω since u = 0 on ∂Ω+
j and is subharmonic there. Therefore, provided

u 6= 0, u must define a nontrivial solution of some of the problems (7.2). By Theorem 11,
this means λ > σ̃1,i ≥ σ̃1.

Finally, according to (iii) of Theorem 11, each of the problems (7.2) defines for λ > σ̃1

large a nontrivial solution to (1.1). These solutions and a combination of them (in the spirit
of the proof of Theorem 2) ensure the validity of (iii).

Proof of Theorem 6. Observe that under the assumptions of the theorem u = 0 is the only
solution to (1.1) for λ = σ1.

Let now λn → σ1− with un a corresponding nonnegative nontrivial solution to (1.1) at
λ = λn. We claim that tn := |un|∞ is bounded. If not, passing to a subsequence we can
assume tn → +∞. Denoting vn = un/tn, we have





∆vn = a(x)vp
n|un|p−1 in Ω

∂vn

∂ν
= λnvn on ∂Ω.
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It is standard to obtain that a subsequence of {vn} converges in C2(Ω) to a function v which
satisfies |v|∞ = 1 and: 




∆v = 0 in Ω

∂v

∂ν
= σ1v on ∂Ω.

(7.3)

By directly integrating (7.3), it follows that v = 0, and this contradicts |v|∞ = 1. Thus tn is
bounded, and we can obtain as before that for a subsequence un → u in C2,β(Ω), 0 < β < γ1,
where u is a solution to (1.1) with λ = σ1. Therefore u = 0, and this proves the convergence
uλ → 0.

Regarding the dead core formation, it follows from the fact supΩ uλ → 0 as λ → σ1−
that a nonempty interior region {uλ = 0} is generated in Ω+ as λ → σ1− (cf. the proof of
Theorem 1 (iv)). However, such region can never reach Γ2 nor Ω0 for λ close to σ1. In fact,
uλ(x0) = 0 at x0 ∈ Γ2 implies uλ = 0 in Ω0. Otherwise, since uλ is harmonic in Ω0 we get
∂uλ

∂ν
(x0) < 0, ν the outward unit normal to Ω0 at x0, what contradicts the nonnegativeness

of uλ. Hence uλ = 0 in Ω0 (notice that such behavior is immediately achieved if uλ = 0
somewhere in Ω0). This means that we get a family uλ of nontrivial solutions to the mixed
problem (5.1) in Ω+ such that uλ → 0 as λ → σ1−. Observe that the existence of such
family is forbidden if σ1 ≤ σ̃1 since such behavior is not possible if σ̃1 < σ1, as observed in
Remark 7. This shows that Oλ ⊂ Ω+ for λ → σ1−. The remaining assertions follow in the
same way as in the case of Theorem 1.

Remark 8. In order to illustrate with an example the relative values of σ1 and σ̃1 consider
the annulus Ω = {R1 < |x| < R2}, 0 < R1 < R2 fixed. For R1 < R < R2 variable, set
Ω+ = {R1 < |x| < R}, Ω0 = {R < |x| < R2} and so Γ1 = {|x| = R2}, Γ2 = {|x| = R},
Γ+ = ∂Ω \ Γ1 = {|x| = R1}. The principal eigenvalues σ1, σ̃1 (see (1.3), (1.4)) must in this
case be associated to radial (harmonic) eigenfunctions and hence are explicitly given by:

σ1 =
(N − 2)RN−2

R2(R
N−2
2 −RN−2)

, σ̃1 =
(N − 2)RN−2

R1(RN−2 −RN−2
1 )

. (7.4)

Observe that σ1 = σ̃1 at R = R∗, R∗/R1 = (ζN−1 + 1)/(ζ + 1), ζ = R2/R1, σ1 < σ̃1 for
R1 < R < R∗, σ1 > σ̃1 if R∗ < R < R2. This shows that it is possible to have both situations
σ1 ≤ σ̃1 and σ1 > σ̃1.

Let us now construct examples showing the behaviors announced in Remark 1 (b), namely
a situation where σ̃1 < σ1 and either no solutions exist for λ > σ1, λ ∼ σ1, or another one
where solutions exist for σ1− ε < λ < σ1 for a certain ε > 0. In what follows, we are having
in mind that R is fixed, while R2 is going to vary. Choose a ∈ Cγ(RN) such that a > 0 for
|x| < R, a = 0 in |x| ≥ R, and consider the problem





∆u = a(x)up x ∈ Ω+

∂u

∂ν
= λu x ∈ Γ+

u = 0 x ∈ Γ2.

(7.5)
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Theorem 11 provides the existence of σ̃1 < λ∗ ≤ λ1 (see (ii)) such that the unique positive

solution uλ to (7.5) satisfies
∂uλ

∂ν
< 0 on Γ2 (ν the outward unit normal to Ω+ on Γ2) for

each σ̃1 < λ < λ∗.
Now in order to obtain an example of the first situation notice that (7.4) allows to choose

R2 such that σ̃1 < σ1 < λ∗. This means that problem (1.1) can not exhibit a nonnegative
nontrivial solution u at least for any σ1 ≤ λ ≤ λ∗. In fact, such possible solution u should
vanish in Ω0 (Lemma 14) thus providing a nonnegative nontrivial solution to (7.5) with
∂uλ

∂ν
= 0 on Γ2 which is not possible in such range for λ.

To achieve an example of the second situation it suffices with choosing R2 so that σ1 > λ2

with λ2 as in (ii) of Theorem 11. This completes the announced constructions.
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[11] J. Garćıa-Melián, J. D. Rossi, J. Sabina de Lis, A bifurcation problem gov-
erned by the boundary condition I, to appear in Nonlinear Differential Equations Appl.
NoDEA.
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