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Abstract. We prove the existence of a critical exponent of Fujita type for the nonlocal
diffusion problem{

ut(x, t) = J ∗ u(x, t)− u(x, t) + up(x, t), x ∈ RN , t > 0,
u(x, 0) = u0(x), x ∈ RN ,

where J is a compactly supported nonnegative function with unit integral and p > 1.
Our main result establishes that the Fujita exponent pF coincides with the classical one
when the diffusion is given by the Laplacian. We also deal with reaction terms of nonlocal
nature as J ∗ up or (J ∗ u)p.

1. Introduction

In the classical paper [26], H. Fujita analyzed the question of global existence in time
for positive solutions to certain semilinear parabolic initial value problems posed in RN .
More precisely, he proved that if u0 is a nonnegative, nontrivial, bounded smooth function
in RN , then the problem

(1.1)
{

ut = ∆u + up in RN × (0,∞),
u(·, 0) = u0 in RN ,

admits no global solutions when 1 < p < 1 + 2/N , while it has both bounded global
solutions and solutions which blow up in finite time if p > 1 + 2/N . When p = 1 + 2/N ,
it was shown later in [30] (for N = 1, 2), [35] and [5], that all nontrivial solutions to (1.1)
blow up in finite time. The number 1 + 2/N is nowadays usually known as the Fujita
exponent for problem (1.1).

These results have been generalized to deal with some more general situations, where
the Laplacian is replaced by a different diffusion operator and/or the reaction term up by
a nonlinearity f(u). We refer the interested reader to the surveys [36] and [22].

In the present paper we intend to investigate the existence of a Fujita exponent for
initial value problems of nonlocal nature. This question has already been addressed when
the diffusion operator is the fractional Laplacian in [42] (see also [8] for a probabilistic
approach) and when the reaction term is of integral type in [27]. Here we will devote
our study to a nonlocal diffusion operator different from the fractional Laplacian, with
reaction terms which are both local and nonlocal.

We will firstly be concerned with problem (1.1) when the Laplacian is substituted by a
term involving a convolution, namely

(1.2)
{

ut = J ∗ u− u + up in RN × (0,∞),
u(·, 0) = u0 in RN ,

where ∗ stands for the usual convolution, with a kernel J that is assumed to be a non-
negative continuous function with unit integral. Evolution problems with this type of
diffusion have been widely considered in the literature, since they can be used to model
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the dispersal of a species by taking into account long-range effects, [25]. In fact, the linear
homogeneous problem

(1.3)
{

ut = J ∗ u− u in RN × (0,∞),
u(·, 0) = u0 in RN ,

has been the subject of many recent works, not only in RN but also when it is posed in a
smooth bounded domain Ω and it is complemented by a suitable Dirichlet or Neumann type
boundary condition. We quote for instance [11], [16], [17], [31], [32] and [33]. Nonlinear
problems related to (1.3) have also been largely studied: see [7], [9], [12], [20], [21], [41]
for the question of traveling waves, [18], [19], [29] for logistic type nonlinearities and [1],
[2], [3], [4], [6], [10], [13], [14], [15], for more general nonlocal diffusion operators.

As an outstanding difference with respect to the fractional Laplacian case, it was as-
sumed in most of the previous works that J has compact support. This makes problem
(1.2) resemble problem (1.1) a little bit. Indeed, we will prove that the Fujita exponent
for (1.2) is given by

(1.4) pF = 1 +
2
N

,

which coincides with the one for problem (1.1).

A word on the notion of solution: by a local solution to (1.2) we mean a function
u ∈ C1((0, T ), L1(RN ) ∩ L∞(RN )) ∩ C([0, T ), L1(RN ) ∩ L∞(RN )) for some T > 0, which
verifies the equation a. e. in RN × (0, T ) and takes the initial condition in the usual way.
We remark that problem (1.2) is well posed in L1(RN ) ∩L∞(RN ) (see precise statements
in Section 3).

Let us next state our results for problem (1.2). Throughout the paper we will always
assume that J ∈ C(RN ) is compactly supported, radially symmetric, radially decreasing
and has unit integral. With no loss of generality we take the support of J to be the unit
ball.

Theorem 1. Let pF be given by (1.4).
(a) Assume u0 ∈ L1(RN ) ∩ L∞(RN ) is nonnegative and nontrivial and 1 < p ≤ pF .

Then the solution to the Cauchy problem (1.2) blows up in finite time.
(b) If p > pF , then there exist nonnegative initial data u0 ∈ L1(RN )∩L∞(RN ) such that

problem (1.2) admits global solutions, which are in addition bounded in L1(RN )∩L∞(RN )
and converge uniformly to zero as t →∞.

Remarks 1. (a) As for problem (1.1), there exist positive solutions to (1.2) which blow up
in finite time even when p > pF . This is shown as in part (a) of Theorem 1 (see Section
4).

(b) The solutions constructed in part (b) of Theorem 1 decay to zero at the same rate as
the solutions to the homogeneous problem (1.3), that is, there exists a positive constant
C such that

|u(·, t)|L∞ ≤ C(1 + t)−N/2

for all t > 0.

We would like to mention that, though the semigroup associated to problem (1.3) shares
its asymptotic behavior with that of the heat equation, many features of the former are
different from that of the latter. For instance, the nonlocal equation has no regularizing
effect, and this translates into a fundamental solution which is highly singular and contains



FUJITA EXPONENT FOR NONLOCAL DIFFUSION 3

a Dirac delta (see [11]). Therefore, many of the available proofs for problem (1.1) can not
work here; indeed, many of them rely even in the explicit form of the heat kernel. Some
other proofs make use of self-similar solutions for problem (1.3), which in the present
situation can not exist, since the scaling invariance in the operator is lost due to the
convolution. Thus, our proofs will be based in different arguments.

Two important previous results are needed for our proofs to work: the first one is the
precise behavior of the principal eigenvalue of the operator J ∗ u− u in a ball of radius R
as R →∞, which has been obtained in [28]. The second one is the asymptotic behavior of
the solutions to (1.3) for large values of t, which coincides with that for the heat equation,
and was considered in [11]. For completeness, they will be recalled in Sections 2 and 3,
respectively.

We will next consider a modification of problem (1.2). Notice that if it is thought of as
describing the evolution of a species with nonlocal diffusion effects, then it makes sense
to admit that the reaction effects can also be nonlocal. Thus, it is natural to consider a
version on (1.2) in which the local term up is replaced by a nonlocal one which also has
a power growth. There are, of course, many ways of doing this. However, we will restrict
ourselves to two possible “nonlocal reaction” versions of (1.2), namely

(1.5) ut = J ∗ u− u + J ∗ up in RN × (0,∞),

and

(1.6) ut = J ∗ u− u + (J ∗ u)p in RN × (0,∞),

where p > 1.
At first glance, it could seem that the presence of the nonlocal reaction terms in problems

(1.5) and (1.6) –which are in some sense stronger than the local one– could force the
solutions to blow-up more easily, but we will prove that in the present case the Fujita
exponent is exactly the same as for (1.2), given by (1.4).

Theorem 2. Under the same hypotheses on J , Theorem 1 also holds for problems (1.5)
and (1.6).

Remark 2. A slight generalization of problems (1.5) and (1.6) can be treated by means
of the same methods. For instance, the convolution in the right hand side can be made
against a different kernel G, as long as it verifies G ≥ cJ for some positive constant c.
Notice that this condition is met in particular when G > 0 in RN or more generally when
the support of G contains the unit ball.

The rest of the paper is organized as follows: in Section 2 we gather some preliminaries
on the eigenvalue problem associated to the operator J ∗ u− u. Section 3 is dedicated to
recall the asymptotic behavior of solutions to (1.3), and to establish the basic questions
of local existence and comparison of nonnegative solutions for problems (1.2), (1.5) and
(1.6). Finally, the proofs of Theorems 1 and 2 are carried out in Section 4.

2. Preliminaries on the eigenvalue problem

This section is dedicated to collect some properties of the principal eigenvalue –that is,
the eigenvalue associated to a positive eigenfunction– of the problem

(2.1)
{

J ∗ u− u = −λu in Ω,
u = 0 in RN \ Ω,
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where J is as in the introduction and Ω is a smooth bounded domain of RN . The most
important property we will use in Section 4 is the limit behavior of the principal eigenvalue
in the dilated domain γΩ when γ →∞. This problem was dealt with in [28], where some
other features were also considered.

The next result is part of Theorems 2.1 and 1.5 in [28], where we refer to for proofs.

Theorem 3. Problem (2.1) admits an eigenvalue λ1(Ω) associated to a positive eigen-
function φ ∈ C(Ω). Moreover, it is simple and unique, and it verifies 0 < λ1(Ω) < 1.
Furthermore, λ1(Ω) can be variationally characterized as

(2.2) λ1(Ω) = 1− sup
u∈L2(Ω)

u 6=0

∫

Ω

∫

Ω
J(x− y)u(x)u(y) dy dx

∫

Ω
u2(x) dx

.

Finally, if we denote Ωγ = γΩ for positive γ, then γ2λ1(Ωγ) → A(J)σ1(Ω) as γ → ∞,
where

(2.3) A(J) =
1

2N

∫

RN

J(z)|z|2dz,

and σ1(Ω) is the principal eigenvalue of −∆ in Ω with homogeneous Dirichlet boundary
conditions. In addition, if φγ stands for the positive eigenfunction associated to λ1(Ωγ)
with the normalization |φγ |L1(Ωγ) = 1 and we set ψγ(x) = γNφγ(γx), then ψγ → Φ in
L2(Ω) as γ →∞, where Φ is the positive eigenfunction of −∆ with |Φ|L1(Ω) = 1.

The radial symmetry imposed on J implies that problem (2.1) in a ball BR is invariant
with respect to rotations about the origin. Thus the simplicity of the principal eigenvalue
shows that all eigenfunctions are radial. However, for its use in the proofs of Section 4, we
need a stronger property of the eigenfunctions: they are radially decreasing. We remark
though, that the radial symmetry of the eigenfunction does not simplify the equation in
(2.1) (as usually happens with elliptic pde’s with radial symmetry), and thus this property
is not expected to be obtained this way. Therefore, we proceed differently.

Theorem 4. Let BR be the ball of radius R of RN centered at the origin and φ a positive
eigenfunction associated to λ1(BR). Then φ is radially symmetric and radially nonincreas-
ing.

Proof. The proof is based on the properties of symmetric decreasing rearrangements (we
refer to Chapter 3 in [37] for these properties). Let φ ∈ C(BR) be a positive eigenfunction,
and denote by φ∗ its symmetric decreasing rearrangement. Since |φ∗|L2(BR) = |φ|L2(BR)

and, according to Riesz inequality∫

BR

∫

BR

J(x− y)φ(x)φ(y) dy dx ≤
∫

BR

∫

BR

J∗(x− y)φ∗(x)φ∗(y) dy dx

=
∫

BR

∫

BR

J(x− y)φ∗(x)φ∗(y) dy dx,

we have, thanks to the variational characterization (2.2), that

1− λ1(BR) =

∫

BR

∫

BR

J(x− y)φ∗(x)φ∗(y) dy dx

∫

BR

φ∗2(x) dx

,
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whence φ∗ is an eigenfunction. The simplicity of λ1(BR) implies φ = φ∗, and the theorem
follows. ¤

3. The Cauchy problem

Let us begin by observing that the operator Au = J ∗ u − u is bounded in L1(RN ) ∩
L∞(RN ). Thus, it generates a uniformly continuous semigroup of bounded operators.
Hence the Cauchy problem (1.3) has a unique solution for every u0 ∈ L1(RN ) ∩ L∞(RN ),
which is given by eAtu0, [24]. It turns out that, under appropriate conditions on the
initial datum u0, the asymptotic behavior of this solution as t → ∞ is exactly the same
as the behavior of the solution of the heat equation with the same initial data. This
phenomenon was analyzed in [11], from which we quote the following important result. It
is worth noticing that the dependence on the initial datum of the constant in inequality
(3.1) below is not explicitly stated in Theorem 1 there. However, it can be checked by
means of a careful analysis of its proof.

Theorem 5. Let u0 ∈ L1(RN ) be such that its Fourier transform û0 also belongs to
L1(RN ). Then there exists a positive constant C such that the solution u to (1.3) verifies

(3.1) |u(·, t)|L∞ ≤ C(|u0|L1 + |û0|L1)(1 + t)−
N
2 for all t ≥ 0.

Next, let us state a result which implies that problem (1.2) is well-posed in L1(RN ) ∩
L∞(RN ). Most part of the proof is standard, based on contraction and continuation
arguments, so we simply omit it (for a related situation see Theorem 1.1 in [39]).

Theorem 6. Let p > 1 and u0 ∈ L1(RN ) ∩ L∞(RN ) with u0 ≥ 0. Then problem (1.2)
admits a unique solution u which is defined in a maximal interval of time [0, T ). Moreover,
if T < ∞, then |u(·, t)|L∞ blows up as t → T−.

Proof. We only show that last assertion, the other ones being standard. Notice that when
T < ∞ then the norm |u(·, t)|L1 + |u(·, t)|L∞ must blow up as t → T−. Thus, assume that
|u(·, t)|L∞ remains bounded as t → T−. If we integrate the equation in RN :

(∫

RN

u

)

t

=
∫

RN

ut =
∫

RN

up ≤ |u(·, t)|p−1
L∞

∫

RN

u,

and it follows that |u(·, t)|L1 is bounded as t → T−. Thus |u(·, t)|L1 + |u(·, t)|L∞ can not
blow up, a contradiction. ¤

We finally consider a comparison principle for positive solutions to (1.2) which will be
a fundamental tool in order to prove existence of global solutions (we refer to [23] and
Appendix F in [40] for related comparison theorems for nonlocal problems).

Theorem 7. Let u, v ∈ C1((0, T ), L1(RN ) ∩ L∞(RN )) ∩ C([0, T ), L1(RN ) ∩ L∞(RN )) be
nonnegative functions verifying

ut ≤ J ∗ u− u + up, vt ≥ J ∗ v − v + vp in RN × (0, T )

for some T > 0, with u(·, 0) ≤ v(·, 0) in RN . Then u ≤ v in RN × [0, T ).

Proof. Let w = u− v and choose T̃ < T . In RN × (0, T̃ ) we have

(3.2) wt ≤ J ∗ w − w + a(x, t)w
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for some function a(x, t) which is bounded in RN × [0, T̃ ]. We now notice that, by in-
terpolation, we have w(·, t) ∈ L2(RN ) for all t ∈ [0, T̃ ]. Thus, if we multiply (3.2) by
w+ = max{w, 0}, integrate in RN and use Fubini’s theorem, we have

(3.3)
(∫

RN

w+(x, t)2dx

)

t

≤ C

∫

RN

w+(x, t)2dx.

Since w+(·, 0) = 0, we arrive to w+ ≡ 0 in RN × [0, T̃ ]. Noticing that T̃ < T is arbitrary,
we finally have u ≤ v in RN × [0, T ). ¤

Remarks 3. (a) With a quite similar argument it is shown that the comparison principle
also holds for the homogeneous problem (1.3). In particular, if u0 ≥ 0, then eAtu0 ≥ 0.

(b) Similar conclusions hold for problems (1.5) and (1.6). The proofs of the last statement
in Theorem 6 and of Theorem 7 are only minor modifications of the ones just given. For
instance in the proof of the comparison principle for problem (1.6) we would have instead
of (3.3): (∫

RN

w+(x, t)2dx

)

t

≤ C

∫

RN

w+(x, t)(J ∗ w+)(x, t)dx.

Using Hölder’s inequality in the last integral and then Jensen’s inequality and Fubini’s
theorem, we would obtain

∫

RN

w+(x, t)(J ∗ w+)(x, t)dx ≤
(∫

RN

w+(x, t)2dx

)1/2 (∫

RN

(J ∗ w+(x, t))2dx

)1/2

≤
(∫

RN

w+(x, t)2dx

)1/2 (∫

RN

J ∗ (w+)2(x, t)dx

)1/2

=
∫

RN

w+(x, t)2dx,

and the proof concludes as before.

4. Fujita exponents

This section is dedicated to the proof of Theorems 1 and 2. We will give in full detail
that of Theorem 1. But before proceeding further, we give an Lp(RN × [0,∞)) bound for
global solutions to (1.2) and (1.5).

Lemma 8. Let u be a nonnegative global solution to problem (1.2) or (1.5), and assume
that there is a constant C such that |u(·, t)|L1 ≤ C for all t ≥ 0. Then

∫ ∞

0

∫

RN

u(x, t)p dx dt < ∞.

Proof. Assume first that u is a solution to (1.5). Integrate the equation in (1.5) in RN

and apply Fubini’s theorem to get

(4.1)
(∫

RN

u

)

t

=
∫

RN

J ∗ up =
∫

RN

up.

Integrating in (0, t) for arbitrary t we have
∫

RN

u(·, t)−
∫

RN

u0 =
∫ t

0

∫

RN

up.
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Thanks to the assumption of boundedness in L1(RN ), we may let t →∞ to get the lemma
proved for solutions to (1.5). The proof for solutions to (1.2) is the same, except that the
middle integral in (4.1) does not appear. ¤

Proof of Theorem 1. (a) This proof is inspired in an argument of Kaplan, [34]. Choose
R > 0 and let φR be the positive eigenfunction of (2.1) associated to λ1(BR) normalized
by |φR|L1(BR) = 1. Multiplying the equation (1.2) by φR and integrating in BR we have

(4.2)
(∫

BR

uφR

)

t

=
∫

BR

utφR =
∫

BR

(J ∗ u− u)φR +
∫

BR

upφR.

For the term with the convolution in the right-hand side of (4.2) we obtain, by means of
Fubini’s theorem, and using the symmetry of J :

∫

BR

(J ∗ u− u)φR =
∫

BR

(∫

RN

J(x− y)u(y)dy − u(x)
)

φR(x)dx

=
∫

RN

(∫

BR

J(x− y)φR(x)dx

)
u(y)dy −

∫

BR

u(x)φR(x)dx

≥
∫

BR

(∫

BR

J(x− y)φR(x)dx

)
u(y)dy −

∫

BR

u(x)φR(x)dx

= −λ1(BR)
∫

BR

u(x)φR(x)dx,

while for the second term in the right-hand side of (4.2) we may apply Jensen’s inequality
to arrive at (∫

BR

uφR

)

t

≥ −λ1(BR)
∫

BR

uφR +
(∫

BR

uφR

)p

.

It follows that
∫
BR

uφR blows up at a finite time (and hence blow up occurs in L1
loc and

in L∞) provided that

(4.3)
∫

BR

u(x, t0)φR(x)dx ≥ (λ1(BR))
1

p−1

at some t0 ≥ 0. Let us prove that this condition always holds for t0 = 0 and every initial
datum u0 ∈ L1(RN ) ∩ L∞(RN ) provided 1 < p < pF .

Set ψR(x) = RNφR(Rx) for x ∈ B := B1. Then condition (4.3) with t0 = 0 is equivalent
to

(4.4)
∫

BR

u0(x)ψR

( x

R

)
dx ≥ R

N− 2
p−1 (R2λ1(BR))

1
p−1 .

Now choose R0 > 0 and observe that Theorem 4 implies that ψR is radially decreasing.
Hence, for R > R0 we find that

∫

BR

u0(x)ψR

( x

R

)
dx ≥

∫

BR0

u0(x)ψR

(
x

R0

)
dx,

so that, letting first R →∞, using Theorem 3, and then letting R0 →∞, we arrive at

lim inf
R→∞

∫

BR

u0(x)ψR

( x

R

)
dx ≥ Φ(0)

∫

RN

u0(x)dx > 0.
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On the other hand, if p < pF , and using again Theorem 3, we arrive at

lim
R→∞

R
N− 2

p−1 (R2λ1(BR))
1

p−1 = 0.

Thus (4.4) always holds for large R, and hence blow-up occurs at finite time for every
nonnegative nontrivial initial condition u0 ∈ L1(RN ) ∩ L∞(RN ).

Remark 4. Observe that the above reasoning fails when p = pF . Nevertheless, it shows
that global solutions u to (1.2) are uniformly bounded in L1(RN ). Indeed, they cannot
verify (4.4) and, thus, for fixed R0 and R > R0 we have

∫

BR0

u(x, t)ψR

(
x

R0

)
dx ≤

∫

BR

u(x, t)ψR

( x

R

)
dx ≤ (R2λ1(BR))

1
p−1

for every t ≥ 0. Letting R → ∞ and then R0 → ∞ and using Theorem 3 once again, we
have

(4.5)
∫

RN

u(x, t)dx ≤ (A(J)σ1(Ω))
1

p−1

Φ(0)
,

which provides with the desired L1 bound.

To conclude the proof of (a), we finally show that nonnegative global solutions to (1.2)
(aside the trivial one) do not exist when p = pF . We use a modification of arguments in
[38]. For this aim we choose functions ξ ∈ C∞

0 (B), ψ ∈ C∞(−1, 1) verifying 0 ≤ ξ, ψ ≤ 1,
ξ = 1 in B1/2, ψ = 1 in [0, 1/2), and set

ξR(x) = ξ
( x

R

)
, ψR(t) = ψ

(
t− t0
R2

)
,

where t0 > 0 is arbitrary, but fixed. Multiplying the equation in (1.2) by ξR(x)ψR(t) and
integrating in [t0,∞) we get

(4.6)

∫ ∞

t0

∫

RN

ut(x, t)ξR(x)ψR(t)dxdt =
∫ ∞

t0

∫

RN

(J ∗ u− u)(x, t)ξR(x)ψR(t)dxdt

+
∫ ∞

t0

∫

RN

u(x, t)pξR(x)ψR(t)dxdt.

Integrating by parts with respect to time in the integral in the left-hand side of (4.6) we
obtain ∫ ∞

t0

∫

RN

ut(x, t)ξR(x)ψR(t)dxdt ≤ −
∫ ∞

t0

∫

RN

u(x, t)ξR(x)ψ′R(t)dxdt,

so that, applying Fubini’s theorem in the first integral in the right-hand side of (4.6), we
arrive at
(4.7)∫ ∞

t0

∫

RN

u(x, t)pξR(x)ψR(t)dxdt ≤ −
∫ ∞

t0

∫

RN

u(x, t)ξR(x)ψ′R(t)dxdt

−
∫ ∞

t0

∫

RN

(J ∗ ξR − ξR)(x, t)u(x, t)ψR(t)dxdt.

We notice next that

(4.8) |ψ′R(t)| =
∣∣∣∣

1
R2

ψ′
(

t− t0
R2

)∣∣∣∣ ≤
C

R2
χ{t0+ 1

2
R2,t0+R2}, t ≥ t0,
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where we denote by χA the characteristic function of a set A (here and in what follows, the
letter C will denote a positive constant, not necessarily the same everywhere). Moreover,

(4.9) (J ∗ ξR − ξR)(x) =
∫

RN

J(z)
(

ξ

(
x + z

R

)
− ξ

( x

R

))
dz,

and thanks to Taylor’s theorem, since ξ is smooth,

ξ

(
x + z

R

)
− ξ

( x

R

)
=

1
R

N∑

i=1

zi
∂ξ

∂xi

( x

R

)
+

1
2R2

N∑

i,j=1

zizj
∂2ξ

∂xixj

( x

R

)
+ O

(
1

R3

)
,

where O(1/R3) is a function which vanishes in |x| < R/2 and in |x| > R. Now observe
that, thanks to the symmetry of J we obtain

∫

RN

J(z)zidz = 0,

∫

RN

J(z)zizj = 2A(J)δij

where A(J) is as in (2.3). Thus, from (4.9), we have

(4.10) |(J ∗ ξR − ξR)(x)| =
∣∣∣∣
A(J)
R2

∆ξ
( x

R

)
+ O

(
1

R3

)∣∣∣∣ ≤
C

R2
χ{ 1

2
R<|x|<R}.

Plugging (4.8) and (4.10) into (4.7) we obtain the inequality
∫ ∞

t0

∫

RN

u(x, t)pξR(x)ψR(t)dxdt ≤ C

R2

(∫ t0+R2

t0+ 1
2
R2

∫

|x|<R
u(x, t)dxdt

+
∫ t0+R2

t0

∫
1
2
R<|x|<R

u(x, t)dxdt

)
.

Making use of Hölder’s inequality and taking into account that p = pF , we obtain

(4.11)

∫ ∞

t0

∫

RN

u(x, t)pξR(x)ψR(t)dxdt ≤ C




(∫ t0+R2

t0+ 1
2
R2

∫

|x|<R
u(x, t)pdxdt

)1/p

+

(∫ t0+R2

t0

∫
1
2
R<|x|<R

u(x, t)pdxdt

)1/p

 .

It now follows from Remark 4 and Lemma 8, after letting R →∞, that
∫ ∞

t0

∫

RN

u(x, t)pdxdt = 0,

and because t0 was arbitrary we arrive at u ≡ 0 in RN × (0,∞). This shows that no
nontrivial nonnegative global solutions exist in this case.

(b) We will show the existence of positive global solutions to (1.2) for some initial datum
u0 ∈ L1(RN ) ∩ L∞(RN ) by constructing a supersolution in the spirit of [43].

Choose u0 ∈ L1(RN ) ∩ L∞(RN ) such that its Fourier transform û0 belongs to L1(RN ),
and let δ = |u0|L1 + |û0|L1 . The supersolution will take the form

(4.12) ū(x, t) = h(t)v(x, t)
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where v = eAtu0 is the unique solution to (1.3), as in Section 3, and h is to be chosen. It
is not hard to check that ū will be a supersolution provided that

(4.13)
h′(t)
h(t)p

≥ |v(·, t)|p−1
∞ .

According to (3.1) in Theorem 5, for (4.13) to hold it is sufficient that

h′(t)
h(t)p

≥ Cδ(1 + t)−
N(p−1)

2 .

Thus a good choice for the function h is

h(t) =
(

1− Cδ(p− 1)
α

(
1− (1 + t)−α

))− 1
p−1

,

where α = N(p − 1)/2 − 1 > 0, provided that δ is small enough. Since ū(·, 0) = u0,
Theorem 7 shows that the solution to (1.2) is global and bounded. ¤

We observe that, since the proof of Theorem 2 is similar to that of Theorem 1, we
will not give the full details of the former, and will only sketch the main differences with
respect to the latter.

Proof of Theorem 2. Let us start by noticing that the proof of part (a) remains valid, if we
take into account that, thanks to Jensen’s inequality applied twice and Fubini’s theorem

∫

BR

(J ∗ up)φR ≥
∫

BR

(J ∗ u)pφR ≥
(∫

BR

(J ∗ u)φR

)p

=
(∫

BR

(J ∗ φR)u
)p

= (1− λ1(BR))p

(∫

BR

φRu

)p

,

so that (∫

BR

uφR

)

t

≥ −λ1(BR)
∫

BR

uφR + (1− λ1(BR))p

(∫

BR

uφR

)p

.

If 1 < p < pF , the rest of the proof goes as before.
Now consider the case p = pF . It is not hard to check that, if u is a global solution to

(1.6), then v = J ∗ u is a global solution to (1.5) and |u(·, t)|L1 = |v(·, t)|L1 for all t > 0.
Thus it suffices to show that problem (1.5) has no global solutions.

As in Remark 4, we obtain an L1 bound for global solutions to (1.5), and then Lemma
8 shows that u ∈ Lp(RN × (0,∞)). With exactly the same reasoning which led to (4.11)
we obtain

∫ ∞

t0

∫

RN

J ∗ u(x, t)pξR(x)ψR(t)dxdt ≤ C




(∫ t0+R2

t0+ 1
2
R2

∫

|x|<R
u(x, t)pdxdt

)1/p

+

(∫ t0+R2

t0

∫
1
2
R<|x|<R

u(x, t)pdxdt

)1/p

 ,

and we can let R →∞ and then t0 → 0 to have u ≡ 0 in RN × (0,∞).

Part (b) follows by constructing again a supersolution. We recall that if u is a nonneg-
ative global solution to (1.6), then J ∗ u is a nonnegative global solution to (1.5), thus it
suffices with showing that problem (1.6) admits global solutions for some choices of initial
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data. However, the introduction of a nonlocal term as a reaction implies that the choice
of the initial datum has to be very particular. We first set

u0(x) = δ
1

(1 + |x|)θ

for small δ and θ > N . Then u0 ∈ L1(RN ) ∩ L∞(RN ). It is not hard to check that
J ∗ u0(x) ≤ 2θu0(x) for all x ∈ RN . Moreover, if v = eAtu0, that is, the solution to the
linear problem (1.3), then we have that 2θv − J ∗ v is the solution to the same problem
with initial datum 2θu0 − J ∗ u0 ≥ 0. Thus, by the comparison principle (see Remarks 3
(a)), 2θv − J ∗ v ≥ 0, i. e. J ∗ v ≤ 2θv in RN × (0,∞).

For this particular initial datum, we choose a supersolution in the form (4.12). Then ū
will be a supersolution if

h′(t)v(x, t) ≥ h(t)p(J ∗ v(x, t))p,

which will hold when
h′(t)
h(t)p

≥ 2θp|v(·, t)|p−1
L∞ .

Now the rest of the proof goes as in Theorem 1. ¤
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Molecular y Fotónica, Facultad de F́ısica, Universidad de La Laguna
C/. Astrof́ısico Francisco Sánchez s/n, 38203 – La Laguna, SPAIN
E-mail address: jjgarmel@ull.es

F. Quirós
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