
EXISTENCE AND UNIQUENESS OF SOLUTIONS TO

NONLINEAR ELLIPTIC EQUATIONS WITHOUT GROWTH

CONDITIONS AT INFINITY
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Abstract. In this paper we consider the nonlinear elliptic problem −∆u + |u|p−1u +
|∇u|q = f in RN , where p > 1 and q > 0. We show that if the function f belongs
to Lr

loc(RN ) for some suitable r ≥ 1, then there exists a distributional solution to the
equation, independently of the behavior of f at infinity. We also analyze the uniqueness
of this solution in some cases.

1. Introduction

In [6], the following somewhat surprising result was obtained: if p > 1 and f ∈ L1
loc(RN ),

then there exists a unique distributional solution to

(1.1) −∆u+ |u|p−1u = f in RN .

The surprising fact is that the existence or uniqueness of solutions to (1.1) do not depend
on the behavior of f at infinity, but strongly relies on the fact that p > 1.

The question of existence and uniqueness of solutions without prescribing a growth
on f at infinity has been subsequently considered for more general equations than (1.1),
obtained when the Laplacian is substituted by a divergence operator of p−Laplacian type
(see [4] or [12]) or by a fully nonlinear operator (cf. [7]). The extension to parabolic
equations has been also studied in [5] and [13].

Our intention in the present paper is to analyze whether the existence and uniqueness
features in (1.1) still hold when we introduce a term that depends on the gradient in the
equation. More precisely, we will be interested in the problem

(1.2) −∆u+ |u|p−1u+ |∇u|q = f in RN

where p > 1, q > 0 and f ∈ L1
loc(RN ). It will be deduced from our proofs below that some

more general problems can be considered, for instance the m−Laplacian version of (1.2),
although the optimal conditions on the parameters m, p, q, and r when f ∈ Lr

loc(RN ) are
far from clear. However, we will restrict our attention to (1.2) for simplicity.

By a solution to (1.2) we understand a function u ∈ Lp
loc(R

N ) such that |∇u|q ∈
L1
loc(RN ), and verifies (1.2) in the distributional sense, i. e.

−
∫
u∆ϕ+

∫
(|u|p−1u+ |∇u|q)ϕ =

∫
fϕ

for every ϕ ∈ C∞
0 (RN ). It is then known that since ∆u ∈ L1

loc(RN ) we have u ∈W 1,s
loc (R

N )
for every s such that 1 ≤ s < N/(N − 1). As it is usual, a slight increase of regularity in
f will reflect in a gain of regularity for u.

Let us state our results. We begin with the case where 0 < q < 2p/(p + 1), where the
regularity f ∈ L1

loc(RN ) is enough to obtain a solution. In this case, the gradient term
does not “interfere too much” with the structure of (1.1).
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Theorem 1. Let p > 1 and 0 < q < 2p
p+1 . Then for every f ∈ L1

loc(RN ), there exists a

distributional solution u to the problem

−∆u+ |u|p−1u+ |∇u|q = f in RN .

This solution verifies u ∈ Lp
loc(R

N ) ∩W 1,s
loc (R

N ) for every s ∈
(
1,max{ 2p

p+1 ,
N

N−1}
)
. More-

over, if f ≥ 0 we have u ≥ 0.

When q ≥ 2p/(p + 1), the L1
loc regularity for f seems not enough to ensure existence.

Also, let us remark that the sign of f is an important issue here (mainly when q > 2).
This is due to the fact that the equation in (1.2) is not invariant under the change of u by
−u, as happens with (1.1). Thus we are restricting ourselves in the present paper to the
case where f ≥ 0, delaying the study of a negative f to a future work. We remark that
the differences between a positive and a negative f can be seen even when the problem
is posed in a bounded domain in RN . Our next result is indeed valid in the whole range
q > 1.

Theorem 2. Let p, q > 1 and f ∈ Lr
loc(RN ) for some r > N with f ≥ 0. Then there

exists a strong solution u ∈ C1(RN ) ∩W 2,r
loc (R

N ) to the equation

−∆u+ |u|p−1u+ |∇u|q = f in RN

which is in addition positive.

Next, we analyze how the condition f ∈ Lr
loc(RN ) with r > N can be weakened. For this

purpose, we consider a radially symmetric, nonnegative function f and try to construct
radially symmetric, nonnegative solutions. It turns out that in this framework it is enough
to have r > 1, provided that 1 < q < N/(N − 1). Let us mention in passing that next
theorem is valid in the full range p > 1, but it only gives better results than Theorem 1
when p < N/(N − 2), q ≥ 2p/(p+ 1).

Theorem 3. Let 1 < p < N
N−2 and 2p

p+1 ≤ q < N
N−1 . For every radially symmetric,

nonnegative function f ∈ Lr
loc(RN ), r > 1, there exists a radially symmetric, nonnegative

distributional solution u to the equation

−∆u+ up + |∇u|q = f in RN .

Let us quote that the proof of existence of solutions in all theorems is achieved by
first considering the problem in a smooth bounded domain of RN , complemented with a
Dirichlet boundary condition. The essential step is then to obtain good estimates for the
solutions and their gradients.

Finally, we analyze the question of uniqueness of the solutions constructed before. Due
to the lack of regularity of such solutions in the case 0 < q ≤ 1, it is difficult to establish
their uniqueness. We will be able to do it only if the regularity of f is slightly improved.

Theorem 4. Assume f ∈ Lr
loc(RN ) for some r > N and is nonnegative. Then if 0 < q <

p, problem (1.2) admits a unique solution in W 1,∞
loc (RN ), which is in addition nonnegative.

This solution is indeed in C1(RN ) ∩W 2,r
loc (R

N ).

It is worthy of mention that the condition q < p is optimal in the uniqueness assertion,
since when q ≥ p infinitely many smooth solutions can be constructed when f = 0 (see
Remark 4).
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For the proof of Theorem 4, we follow a device used in [6], with a significant variation:
we use as a tool the minimal solution UR to the boundary blow-up problem{

−∆U + cUp − d|∇U |q = 0 in BR

U = ∞ on ∂BR,

where c, d > 0, which was shown to exist in [1]. A worth noticing property is that UR → 0
uniformly in compacts of RN as R→ ∞.

The rest of the paper is organized as follows: in Section 2 we consider problem (1.2)
in smooth bounded domains of RN with a Dirichlet boundary condition, while Section 3
is dedicated to the obtention of local estimates for these approximate solutions and their
gradients. Finally the proofs of Theorems 1, 2, 3 and 4 are performed in Section 4.

2. A problem in bounded domains

As we have already mentioned in the Introduction, the construction of solutions to (1.2)
relies in the solvability of a related Dirichlet problem in a smooth bounded domain Ω of
RN . The purpose of this brief section is to analyze such problem. Thus we will consider

(2.1)

{
−∆u+ |u|p−1u+ |∇u|q = f in Ω
u = 0 on ∂Ω,

where p > 1 and q > 0. In the present context, we may always take the function f to be
smooth enough, hence we will assume f ∈ C∞(Ω). The result we will need is the following:

Theorem 5. Let Ω ⊂ RN be a smooth bounded domain and f ∈ C∞(Ω), p > 1, q > 0.
When q > 2, assume additionally that f ≥ 0. Then problem (2.1) admits a unique classical
solution u ∈ C2(Ω) ∩ C1(Ω). Moreover, when f ≥ 0, we also have u > 0 in Ω.

Proof. It is clear that the unique solution ū to the problem{
−∆u+ |u|p−1u = |f |∞ in Ω
u = 0 on ∂Ω

is a supersolution to (2.1), which, according to the strong maximum principle, verifies
ū > 0 in Ω. Next, assume 0 < q ≤ 2. We claim that the problem

(2.2)

{
−∆u+ |u|p−1u+ |∇u|q = −|f |∞ in Ω
u = 0 on ∂Ω,

has a unique (negative) solution. Indeed, setting θ = |f |p∞ and v = u+ θ, we can see that
(2.2) is equivalent to

(2.3)

{
∆v − |∇v|q = h(v) in Ω
v = θ on ∂Ω,

where h(v) = θp+ |v− θ|p−1(v− θ) is increasing and verifies h(0) = 0. From Proposition 5
in [1], we deduce that problem (2.3) has unique solution v, which verifies v < θ in Ω from
the strong maximum principle. Letting u = v − θ we obtain the unique solution to (2.2),
which is a subsolution to (2.1).

Since 0 < q ≤ 2, we obtain by standard results (see for instance [2] or [16]) the existence
of a weak solution u ∈ C1(Ω) to (2.1) which verifies u < u < u in Ω. By classical regularity,
we also have u ∈ C2(Ω), although this regularity can be improved depending on the values
of p and q.
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When q > 2 and f ≥ 0, we may still take ū as a supersolution and u = 0 as a subsolution,
and we obtain the existence of a solution u verifying 0 < u < u in Ω thanks to Theorem
III.1 in [14]. �

3. Interior estimates for solutions and
their gradients

In order to construct solutions to (1.2), we need local bounds for solutions and their
gradients. The obtention of these bounds can be achieved when q < 2p/(p + 1) with the
mere assumption f ∈ L1

loc(RN ), but the case q ≥ 2p/(p+ 1) is not so straightforward and
a different strategy must be employed.

We begin by considering the bounds for weak solutions when f ∈ L1
loc(RN ) and 0 < q <

2p/(p+ 1). Recall that u ∈ H1(B2R) is a weak solution to −∆u+ |u|p−1u+ |∇u|q = f in
B2R if ∫

∇u∇ϕ+ (|u|p−1u+ |∇u|q)ϕ =

∫
fϕ

for every ϕ ∈ C∞
0 (B2R). The proof of the next result is inspired in [4].

Theorem 6. Let p > 1 and 0 < q < 2p
p+1 . Then for every R > 0 there exists a constant

C = C(R) > 0 such that for every weak solution u ∈ H1(B2R) to

(3.1) −∆u+ |u|p−1u+ |∇u|q = f in B2R

with f ∈ L1
loc(RN ) we have

(3.2)

∫
BR

|u|p ≤ C

(∫
B2R

|f |+ 1

)
.

Also, for every s ∈ (0, 2p
p+1

)
there exists C = C(s,R) such that

(3.3)

∫
BR

|∇u|s ≤ C

(∫
B2R

|f |+ 1

)
.

Proof. For m > 0 we introduce the function

ϕm(σ) = m

∫ σ

0

dt

(1 + |t|)m+1
, σ ∈ R,

which is odd and verifies
∣∣ϕm(σ)

∣∣ ≤ 1. Choose θ ∈ C∞
0 (B2R) verifying 0 ≤ θ ≤ 1 and

θ ≡ 1 in BR. We take ϕm(u)θα as a test function in the weak formulation of (3.1), where
α > 0 is to be selected later on, to obtain

m

∫
|∇u|2

(1 + |u|)m+1
θα +

∫
|u|p−1uϕm(u)θα

≤
∫

|f |θα + C

∫
θα−1|∇u|+

∫
θα|∇u|q,

thanks to the definition of ϕm. We adopt the usual convention that the letter C denotes
different constants, not depending on u nor f . Observe now that from Young’s inequality
we have

θα−1|∇u| ≤ ε
|∇u|2θα

(1 + |u|)m+1
+ C(ε) θα−2(1 + |u|)m+1
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for every ε > 0, where C(ε) depends only on ε. On the other hand, we can take q0 such

that max{1, q} < q0 <
2p
p+1 , and since |∇u|q ≤ 1 + |∇u|q0 , we obtain again by Young’s

inequality

|∇u|q ≤ 1 + ε
|∇u|2

(1 + |u|)m+1
+ C(ε)(1 + |u|)

(m+1)q0
2−q0 .

Hence, if we fix ε > 0 sufficiently small, we arrive at∫
|∇u|2

(1 + |u|)m+1
θα +

∫
|u|p−1uϕm(u)θα

≤ C

∫
B2R

|f |+ C

∫
(1 + |u|)m+1θα−2 + C

∫
(1 + |u|)

(m+1)q0
2−q0 θα + C

≤ C

∫
B2R

|f |+ C

∫
(1 + |u|)

(m+1)q0
2−q0 θα−2 + C,

since q0/(2− q0) > 1. On the other hand, it is easily seen that |u|p−1uϕm(u) ≥ C|u|p − 1
for u ∈ R. Hence∫

|∇u|2

(1 + |u|)m+1
θα +

∫
|u|pθα ≤ C

∫
B2R

|f |+ C

∫
(1 + |u|)

(m+1)q0
2−q0 θα−2 + C.

A further application of Young’s inequality gives∫
(1 + |u|)

(m+1)q0
2−q0 θα−2 ≤ ε

∫
(1 + |u|)pθα + C(ε)

∫
θ
α− 2p

p−µ ,

where µ =
(m+ 1)q0
2− q0

. We note that we can achieve µ < p if we choose m small enough.

Taking α ≥ 2p

p− µ
and recalling that θ ≡ 1 in BR, we obtain

(3.4)

∫
BR

|∇u|2

(1 + |u|)m+1
+

∫
BR

|u|p ≤ C

(∫
B2R

|f |+ 1

)
.

Finally observe that (3.4) holds for all m > 0 since it holds for small m and the left-hand
side is decreasing in m.

Now (3.2) follows immediately from (3.4). With regard to (3.3), we can use Hölder’s

inequality for every s ∈ (0, 2p
p+1), to have

(3.5)

∫
BR

|∇u|s =

∫
BR

|∇u|s

(1 + |u|)ν
(1 + |u|)ν

≤
(∫

BR

|∇u|2

(1 + |u|)
2ν
s

) s
2
(∫

BR

(1 + |u|)
2ν
2−s

) 2−s
2

,

for every ν > 0. Notice that we can select ν so that 2ν
s > 1, 2ν

2−s ≤ p, since this is equivalent
to

s

2
< ν ≤ p(2− s)

2
.

This election is possible since s < 2p
p+1 . Thus (3.3) follows at once from (3.5) and (3.4).

The proof is concluded. �

Remark 1. When f ∈ Lr
loc(RN ) for some r > 1, we can obtain better estimates for weak

nonnegative, bounded solutions (these last two assumptions are only made for the sake of
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simplicity in the present proof; they do not seem necessary). Indeed, if u is such a solution
we have

(3.6)

∫
BR

upr ≤ C

(∫
B2R

|f |r + 1

)
.

To see this, we take as a test function in (3.1) (u + ε)mθα, where θ is as in the previous
proof, m = p/(r′ − 1), ε > 0 is small and α > 0 is to be chosen. This leads to

m

∫
θα(u+ ε)m−1|∇u|2 +

∫
θαup(u+ ε)m ≤

∫
|f |θα(u+ ε)m + α

∫
θα−1(u+ ε)m|∇u||∇θ|.

From Young’s inequality applied to the last integral we obtain

α

∫
θα−1(u+ ε)m|∇u||∇θ| ≤ m

2

∫
θα(u+ ε)m−1|∇u|2 + C

∫
θα−2(u+ ε)m+1,

where C is a positive constant. Hence∫
θαup(u+ ε)m ≤

∫
|f |θα(u+ ε)m + C

∫
θα−2(u+ ε)m+1.

We can let first ε → 0 and then apply Young’s inequality to have |f |um ≤ 1
2u

pr + C|f |r,
so that

(3.7)
1

2

∫
θαupr ≤ C

∫
|f |rθα + C

∫
θα−2um+1.

Next observe that if we employ once again Young’s inequality in the last integrand we
have θα−2um+1 ≤ 1

4θ
αupr + Cθα−2p′r, and hence (3.7) gives, choosing α > 2p′r,∫

θαupr ≤ C

(∫
|f |rθα + 1

)
.

We obtain (3.6) since 0 ≤ θ ≤ 1 and θ = 1 in BR.

In the complementary case where q ≥ 2p/(p + 1), we will impose an extra amount of
regularity on f . Namely, we will assume that f ∈ Lr

loc(RN ) for some r > N . Although
the estimates for the solutions can be achieved arguing as in [6], it is not so clear how to
obtain appropriate bounds for the gradients to pass to the limit. Hence our approach will
be completely different than in the previous case: it will be a mixture of those in [11] and
[15], and is indeed valid in the whole range q > 1.

Theorem 7. Let p, q > 1, f ∈ C1(RN ) and fix r > N . If u ∈ C3(B4R) is a nonnegative
classical solution to

−∆u+ up + |∇u|q = f in B4R

then there exists a positive constant depending on R and |f |Lr(B4R) such that

(3.8) sup
BR

(u+ |∇u|) ≤ C.

Proof. We first claim that there exists a positive constant C not depending on f nor on u
such that

(3.9)

∫
B2R

up ≤ C

(∫
B4R

|f |+ 1

)
.
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To prove (3.9) we can argue exactly as in [6]. Notice that −∆u + up ≤ f in RN . Now
take a cut-off function ξ ∈ C∞(B4R) verifying 0 ≤ ξ ≤ 1 and ξ ≡ 1 in B2R. Testing the
equation with ξα, where α > 0 will be chosen later on, we have∫

upξα ≤
∫
B4R

|f |+
∫
u∆ξα ≤

∫
B4R

|f |+ C

∫
uξα−2

≤
∫
B4R

|f |+ C

(∫
up ξ(α−2)p

) 1
p

,

where C is a positive constant (depending only on α and ξ) and Hölder’s inequality has

been used. Setting α = 2p
p−1 , we get∫

upξα ≤
∫
B2R

|f |+ C

(∫
upξα

) 1
p

so that (3.9) follows by recalling that ξ ≡ 1 in B2R. Now observe that −∆u ≤ f in B2R,
so that we may apply Theorem 8.17 in [9] to arrive at u ∈ L∞(BR), with the bound

sup
BR

u ≤ C

where C depends on R, |f |Lr(B4R) and on p.

Our next concern will be to obtain estimates for the gradient of u. Let w = |∇u|2, and
observe that w is a smooth function. It is not hard to see that

−∆w + q|∇u|q−2∇u∇w = −2|D2u|2 + 2∇u∇f − 2pup−1w

in RN . Next take a smooth cut-off function φ such that 0 ≤ φ ≤ 1, φ ≡ 1 in BR, φ ≡ 0
in RN\B2R, and |∆φ| ≤ Cφθ, |∇φ|2 ≤ Cφ1+θ, for some positive constant C and a certain
θ ∈ (0, 1) to be chosen later. We have

−∆(φw) + qw
q−2
2 ∇u∇(φw) + 2

∇φ
φ

∇(φw) + 2|D2u|2φ

= qw
q−2
2 ∇u∇φw −∆φw + 2∇u∇fφ− 2pup−1w + 2

|∇φ|2

φ
w

in RN . Taking now m > 0, and using (φw)m as a test function we obtain

m

∫
|∇(φw)|2(φw)m−1 + q

∫
w

q−2
2 ∇u∇(φw)(φw)m

+2

∫
∇φ
φ

∇(φw)(φw)m + 2

∫
|D2u|2φ(φw)m

= q

∫
w

q−2
2 ∇u∇φ(φw)mw −

∫
∆φw(φw)m

+2

∫
∇u∇fφ(φw)m − 2p

∫
up−1w(φw)m + 2

∫
|∇φ|2

φ
w(φw)m.

We next notice that, thanks to Cauchy-Schwarz inequality:

|D2u|2 ≥ 1

N
(∆u)2 ≥ 1

N
(|∇u|q + up − f)2

≥ 1

2N

(
|∇u|q + up)2 − 2

N
|f |2 ≥ 1

2N
|∇u|2q − 2

N
|f |2.
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It follows that

m

∫
|∇(φw)|2(φw)m−1 + q

∫
w

q−2
2 ∇u∇(φw)(φw)m

+2

∫
∇φ
φ

∇(φw)(φw)m +
1

2N

∫
wqφ(φw)m +

∫
|D2u|2φ(φw)m

≤ q

∫
w

q−2
2 |∇φ|w(φw)m +

∫
|∆φ|w(φw)m +

4

N

∫
|f |2(φw)m

+2

∫
|∇φ|2

φ
w(φw)m + 2

∫
∇u∇fφ(φw)m + C,

where for simplicity from now on, the letter C represents a generic constant independent
of u, f,m. Now by the choice we have made of φ:

q

∫
w

q−1
2 |∇φ|w(φw)m ≤ C

∫
φm+ θ+1

2 wm+ q+1
2 ≤ C

∫
φm+θwm+ q+1

2∫
|∆φ|w(φw)m ≤ C

∫
φm+θwm+1

2

∫
|∇φ|2

φ
w(φw)m ≤ C

∫
φm+θwm+1,

hence
(3.10)

m

∫
|∇(φw)|2(φw)m−1 + q

∫
w

q−2
2 ∇u∇(φw)(φw)m

+2

∫
∇φ
φ

∇(φw)(φw)m +
1

2N

∫
φm+1wm+q +

∫
|D2u|2φ(φw)m

≤ C

∫
φm+θwm+ q+1

2 + C

∫
φm+θwm+1 +

4

N

∫
|f |2(φw)m + 2

∫
∇u∇fφ(φw)m + C

≤ C

∫
φm+θwm+ q+1

2 +
4

N

∫
|f |2(φw)m + 2

∫
∇u∇fφ(φw)m + C.

The next step is to estimate the integrals in the right-hand side of (3.10) with the aid of
Young’s inequality in the form ab ≤ εa2 + 1

4εb
2 for a, b > 0 and arbitrary ε > 0. With

regard to the integrals that do not contain f :

−q
∫
w

q−2
2 ∇u∇(φw)(φw)m ≤ q

∫
w

q−1
2 |∇(φw)|(φw)m

≤ ε

∫
|∇(φw)|2(φw)m−1 +

q

4ε

∫
wq−1(φw)m+1

= ε

∫
|∇(φw)|2(φw)m−1 +

q

4ε

∫
φm+1wm+q
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and

−2

∫
∇φ
φ

∇(φw)(φw)m ≤ 2

∫
|∇φ|
φ

|∇(φw)|(φw)m

≤ C

∫
φ

θ−1
2 |∇(φw)|(φw)m

≤ ε

∫
|∇(φw)|2(φw)m−1 +

C

ε

∫
φθ−1(φw)m+1

≤ ε

∫
|∇(φw)|2(φw)m−1 +

C

ε

∫
φm+θwm+1.

Next we consider the integral involving f in the right-hand side of (3.10). Integrating by
parts and using Cauchy-Schwarz inequality we have

2

∫
∇u∇fφ(φw)m = −2

∫
fdiv

(
∇uφ(φw)m

)
= −2

∫
f∆uφ(φw)m − 2

∫
f∇u∇φ(φw)m − 2

∫
f∇uφ∇(φw)m

≤ 2

∫
|f ||∆u|φ(φw)m + 2

∫
|f ||∇u||∇φ|(φw)m

+2m

∫
|f ||∇u|φ(φw)m−1|∇(φw)|

≤
∫

|D2u|2φ(φw)m + C

∫
|f |2φ(φw)m +

∫
|f |2(φw)m

+

∫
|∇u|2|∇φ|2(φw)m +

m

2

∫
|∇(φw)|2(φw)m−1

+Cm

∫
|f |2φ|∇u|2(φw)m−1

≤
∫

|D2u|2φ(φw)m + Cm

∫
|f |2(φw)m +

m

2

∫
|∇(φw)|2(φw)m−1

+C

∫
φm+1+θwm+1.

Hence, plugging everything into (3.10), we get(
m

2
− 2ε

)∫
|∇(φw)|2(φw)m−1 +

(
1

2N
− C

ε

)∫
φm+1wm+q

≤ C

∫
φm+θwm+1 + C

∫
φm+θwm+ q+1

2 + Cm

∫
|f |2(φw)m + C.

Choosing and fixing a small enough ε and then a large m it follows that

(3.11)

m

3

∫
|∇(φw)|2(φw)m−1 +

1

4N

∫
φm+1wm+q

≤ C

∫
φm+θwm+ q+1

2 + C

∫
|f |2(φw)m + C.

Now, we observe that it is possible to choose θ ∈ (0, 1) independent on m such that

m+ θ

m+ q+1
2

>
m+ 1

m+ q
.
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With this choice of θ we obtain φm+θwm+ q+1
2 ≤ 1

4Nφ
m+1wm+q+C, and hence from (3.11)

(3.12)
m

3

∫
|∇(φw)|2(φw)m−1 ≤ C

∫
|f |2(φw)m + C.

On the other hand, by means of Sobolev’s inequality:

m

3

∫
|∇(φw)|2(φw)m−1 =

4m

3(m+ 1)2

∫
|∇(φw)

m+1
2 |2 ≥ C

(∫
(φw)

(m+1)N
N−2

)N−2
N

,

where the constant C depends also on m. Applying Hölder’s inequality to the integral
containing f in (3.12):

(3.13)

∫
|f |2(φw)m ≤

(∫
(φw)

(m+1)N
N−2

) m
m+1

N−2
N

(∫
B2R

|f |2β
) 1

β

where β =

(
m+ 1

m

N

N − 2

)′
. Since β → N/2 < r/2 as m→ ∞, we may choose and fix m

so large that 2β < r, so that the last integral in (3.13) is controlled by |f |Lr(B2R). Hence
from (3.12): (∫

(φw)
(m+1)N

N−2

)N−2
N

≤ C

(∫
(φw)

(m+1)N
N−2

)N−2
N

m
m+1

+ C

which immediately implies ∫
(φw)

(m+1)N
N−2 ≤ C.

Taking into account that φ ≡ 1 in BR and the definition w = |∇u|2 we finally have∫
BR

|∇u|
2(m+1)N

N−2 ≤ C.

Since m can be taken to be arbitrarily large, we obtain local bounds for |∇u| in Ls for
every s > 1. Finally, the equation implies that −∆u = h where h ∈ Lr

loc(RN ) for some
r > N . We have then (3.8) thanks to Theorem 5.2 in [10]. �

Remark 2. Estimates for |∇u| in Lq can be obtained as in [6] when q > 1. We take a
cut-off function ξ ∈ C∞(B2R) with 0 ≤ ξ ≤ 1, ξ ≡ 1 in BR. For α > 0 to be chosen we
test the equation with ξα and since u is nonnegative:∫

|∇u|qξα ≤
∫
B2R

|f | − α

∫
ξα−1∇u∇ξ

≤
∫
B2R

|f |+ C

∫
ξα−1|∇u|

≤
∫
B2R

|f |+ C

(∫
ξ(α−1)q|∇u|q

) 1
q

,

thanks to Hölder’s inequality. Taking α = (α− 1)q, i.e. α = q
q−1 , we obtain∫

|∇u|qξα ≤
∫
B2R

|f |+ C

(∫
ξα|∇u|q

) 1
q

,

where C depends on R, and in particular this gives bounds for |∇u|q in L1(BR). However,
these estimates are not enough to pass to the limit in the proof of Theorem 2.
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Finally, we consider a particular case where appropriate estimates for the gradient of
the solutions can be obtained with only a slight increase in regularity on f . We will restrict
ourselves to a radially symmetric situation.

Theorem 8. Assume p > 1 and 1 < q < N
N−1 . Let f ∈ Lr

loc(RN ) for some r > 1
be radially symmetric. Then for every R > 0 there exists δ > 0 and a positive constant
C = C(δ,R, |f |Lr(B2R)) such that for every radially symmetric smooth nonnegative solution
to

−∆u+ up + |∇u|q = f in B2R

we have

(3.14)

∫
BR

|∇u|q+δ ≤ C.

Proof. Since u is radially symmetric and nonnegative, we have

−u′′ − N − 1

s
u′ + |u′|q ≤ |f |,

where s = |x| and ′ = d/ds. For small ε > 0 to be chosen later, we multiply this equation
by |u′|ε and observe that the resulting equation can be written as:

(3.15) − 1

1 + ε
s−Ñ+1

(
sÑ−1|u′|εu′

)′
+ |u′|q+ε ≤ |f ||u′|ε,

where Ñ = 1+ (N − 1)(1+ ε) > N . We now proceed as in Remark 2: we select a radially
symmetric cut-off function ξ ∈ C∞(B2R) such that 0 ≤ ξ ≤ 1 and ξ = 1 in BR. We
multiply (3.15) by ξα, for α > 0 to be chosen and find that

α

1 + ε

∫ 2R

0
sÑ−1|u′|εu′ξα−1ξ′ +

∫ 2R

0
sÑ−1|u′|q+εξα

≤
∫ 2R

0
sÑ−1|f ||u′|εξα ≤

∫ 2R

0
sÑ−1|f ||u′|ε

≤
(∫ 2R

0
sÑ−1|f |θ′

) 1
θ′
(∫ 2R

0
sÑ−1|u′|εθ

) 1
θ

,

where θ > 1 and we have used Hölder’s inequality. We take θ = q/ε and use the estimates
obtained in Remark 2 to arrive at

(3.16)

∫ 2R

0
sÑ−1|u′|q+εξα ≤ C|f |

L
q

q−ε (B2R)
+ C

∫ 2R

0
sÑ−1|u′|ε+1ξα−1

and we are also using that∫ 2R

0
sÑ−1|f |

q
q−ε ≤ C

∫ 2R

0
sN−1|f |

q
q−ε

since Ñ > N . We choose next ε ≤ q(r − 1)/r and use again Hölder’s inequality in (3.16):∫ 2R

0
sÑ−1|u′|q+εξα ≤ C + C

(∫ 2R

0
sÑ−1|u′|q+εξ(α−1) q+ε

1+ε

) 1+ε
q+ε

,

where C depends additionally on |f |Lr(B2R). Choosing α = q+ε
q−1 and recalling that ξ ≡ 1

in BR, we obtain:

(3.17)

∫ R

0
sÑ−1|u′|q+ε ≤ C.
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Our intention is to obtain estimate (3.14) from this inequality. We first observe that,
thanks to Hölder’s inequality, if δ > 0, we have∫ R

0
sN−1|u′|q+δ =

∫ R

0
s−νsN−1+ν |u′|q+δ

≤
(∫ 2R

0
s−νγ′

) 1
γ′
(∫ R

0
s(N−1+ν)γ |u′|(q+δ)γ

) 1
γ

,

where ν > 0 and γ > 1 are to be chosen next. Observe that if ν and γ are taken verifying

(3.18)

νγ′ < 1

(N − 1 + ν)γ ≥ (N − 1)(1 + ε)

(q + δ)γ ≤ q + ε

then (3.14) will follow thanks to (3.17). Choose γ such that the second equation in (3.18)
holds with equality, that is:

γ =
(N − 1)(1 + ε)

(N − 1 + ν)
.

In order to have γ > 1, we need to restrict ν to have ν < ε(N − 1). The first equation in

(3.18) is then equivalent to ν < ε(N−1)
1+(N−1)(1+ε) (which implies in particular ν < ε(N − 1)).

Thus we choose ν = τε, with

(3.19) τ <
N − 1

1 + (N − 1)(1 + ε)
.

Finally, the third equation in (3.18) can be achieved with a small δ if q < ε
γ−1 , that is, if

(3.20) q <
N − 1 + τε

N − 1− τ
.

Since 1 < q < N/(N−1), we can choose a small ε and τ in such a way that both (3.19) and
(3.20) hold. Hence we have (3.18) and this finally shows (3.14) if δ is small enough. �

4. Proof of the main theorems

This section will be devoted to the proof of Theorems 1, 2, 3 and 4. We will consider
first the proofs of existence of solutions, which are really only different in the use of the
corresponding theorems in Section 3.

Proof of Theorem 1. We follow the same procedure as in [3] or [4]. Choose a sequence
{fn}∞n=1 ⊂ C∞(RN ) such that fn → f in L1

loc(RN ) and for every nonnegative integer n
consider the problem

(4.1)

{
−∆u+ |u|p−1u+ |∇u|q = fn in Bn

u = 0 on ∂Bn.

According to Theorem 5, there exists a unique solution un ∈ C2(Bn) ∩ C1(B̄n) to (4.1).

Choose s such that q < s < 2p
p+1 . By means of Theorem 6, for every R ∈ (0, n/2) there

exists a constant C > 0 depending on R such that

(4.2)

∫
BR

|un|p + |∇un|s ≤ C

(∫
B2R

|fn|+ 1

)
≤ C.
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Since
2p

p+ 1
< p, we obtain bounds in W 1,s(BR) so that, after passing to a subsequence

and by means of a diagonal procedure, we obtain

un ⇀ u weakly in W 1,s
loc (R

N ).

In particular, we may assume

un → u in Ls
loc(RN )

un → u a.e. in RN .

Our intention is to prove that u is a solution to (1.2). Let us first check that u ∈W 1,1
loc (R

N )

and ∇un → ∇u in L1
loc(RN )N .

Let hn = fn − |un|p−1un − |∇un|q. The sequence {hn} is bounded in L1
loc(RN ) by (4.2)

and −∆un = hn. Take ε > 0 and ξ ∈ C∞(B2R) with 0 ≤ ξ ≤ 1 and ξ ≡ 1 in BR. Define

ψ(s) =

{
inf{s, ε}, s ≥ 0

−ψ(−s), s ≤ 0.

Taking ξψ(un−um) as a test function in the weak formulation of −∆(un−um) = hn−hm,
we obtain∫

BR∩An,m,ε

|∇(un − um)|2 ≤ ε

∫
B2R

(|hn|+ |hm|) + Cε

∫
B2R

(|∇un|+ |∇um|) ≤ Cε,

where An,m,ε = {x ∈ RN : |un(x)− um(x)| ≤ ε}. In addition:∫
BR

|∇(un − um)| =
∫
BR∩An,m,ε

|∇(un − um)|+
∫
BR∩Ac

n,m,ε

|∇(un − um)|

≤ |BR|
1
2

(∫
BR∩An,m,ε

|∇(un − um)|2
) 1

2

+ |BR ∩Ac
n,m,ε|

1
q′

(∫
|∇(un − um)|q

) 1
q

≤ Cε
1
2 + C |BR ∩Ac

n,m,ε|
1
q′ ,

where Ac
n,m,ε denotes the complementary of An,m,ε. Since un → u in measure, |BR ∩

Ac
n,m,ε| → 0, so that ∇un is a Cauchy sequence in L1

loc(RN )N , and we obtain ∇un → w in

L1
loc(RN )N . Of course, this gives u ∈W 1,1

loc (R
N ) with w = ∇u.

Next recall that |∇un| is bounded in Ls
loc(RN ) for every s ∈

(
0, 2p

p+1

)
, so that, owing to

a consequence of Vitali’s theorem, we deduce

∇un → ∇u in Ls
loc(RN )N

for every s ∈
(
0, 2p

p+1

)
, in particular for s = q.

Finally, set gn = fn − |∇un|q, g = f − |∇u|q, so that gn → g in L1
loc(RN ). Since

−∆(un − um) + |un|p−1un − |um|p−1um = gn − gm for arbitrary n,m ∈ N, we may employ
Kato’s inequality (cf. the Appendix in [6]) to arrive at

−∆|un − um|+
∣∣|un|p−1un − |um|p−1um

∣∣ ≤ |gn − gm| in RN .

On multiplying this inequality by ξ we have∫
BR

∣∣|un|p−1un − |um|p−1um
∣∣ ≤ ∫

B2R

|gn − gm|+ C

∫
B2R

|un − um| → 0.

In particular
|un|p−1un → |u|p−1u in L1

loc(RN ),
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so that we may pass to the limit in the equation verified by un to obtain that u is a solution
to (1.2). It is a consequence of this proof that u ∈ W 1,s

loc (R
N ) for every s ∈

(
1, 2p

p+1

)
and

u ∈ Lp
loc(R

N ). Finally, since ∆u ∈ L1
loc(RN ), we also have u ∈ W 1,s

loc (R
N ) for every

s ∈ (0, N
N−1). �

Remark 3. When f ∈ Lr
loc(RN ) for some r > N and is nonnegative, a solution u can be

constructed verifying also u ∈ C1(RN )∩W 2,r
loc (R

N ), provided also that 0 < q ≤ 1. Indeed,

if the sequence {fn} is chosen to converge to f in Lr
loc(RN ), and un is the unique solution

to (4.1) (which is nonnegative), we have thanks to (3.6) in Remark 1:∫
BR

uprn ≤ C

(∫
B2R

|fn|r + 1

)
≤ C.

Hence, passing to the limit we find that up ∈ Lr
loc(RN ). Thus −∆u+ |∇u|q = h in RN for

some h ∈ Lr
loc(RN ). We claim that this yields u ∈ C1(RN ) ∩W 2,r

loc (R
N ).

To see the claim just notice that u ∈W 1,s
loc (R

N ) for every s such that 1 ≤ s < N
N−1 , since

∆u ∈ L1
loc(RN ). Then |∇u|q ∈ L

s
q

loc(R
N ) so that ∆u ∈ Lθ1

loc(R
N ), where θ1 = min{r, s/q}.

We may assume θ1 = s/q, for otherwise u ∈W 2,r
loc (R

N ) and we are done since W 2,r
loc (R

N ) ⊂

C1(RN ) when r > N . If θ1 < N , the Sobolev embedding gives |∇u|q ∈ L
Nθ1

q(N−θ1)

loc (RN ),

so that ∆u ∈ Lθ2
loc(R

N ), where θ2 = min{r, Nθ1
q(N−θ1)

}. It is easily checked that θ2 > θ1.

Continuing this way, we obtain an increasing sequence θk defined by

θk = min

{
r,

Nθk−1

q(N − θk−1)

}
,

provided that θk−1 < N , and with the property that u ∈ W 2,θk
loc (RN ). It can be proved

that there must exist k such that θk > N , so that u ∈ C1(RN ) by the Sobolev embedding

and then also u ∈W 2,r
loc (R

N ), by classical regularity.

Proof of Theorem 2. Take fn ∈ C∞(RN ) such that fn ≥ 0 for every n and fn → f in
Lr
loc(RN ). Consider again problem (4.1), which admits a unique solution un ∈ C2(Bn) ∩

C1(B̄n) by Theorem 5. Since q > 1 we also have un ∈ C3(Bn) by standard regularity.
The solution un is strictly positive, so that we may use Theorem 7 to obtain that

(4.3) sup
BR

(un + |∇un|) ≤ C,

where C depends on R and on |f |Lr(B4R). Arguing exactly as in the proof of Theorem 1

we obtain that –passing to a subsequence– un → u in W 1,s
loc (R

N ), for every s > 1, where
u is a solution to (1.2) which is in addition nonnegative. Passing to the limit in (4.3) we

also have u ∈W 1,∞
loc (RN ), and it then follows that ∆u ∈ Lr

loc(RN ), so that u ∈W 2,r
loc (R

N ).

The Sobolev embedding implies then u ∈ C1(RN ). Finally, the strong maximum principle
gives u > 0 in RN . �

Proof of Theorem 3. It is only a minor variation of the existence proof in Theorem 1.
We only have to choose radially symmetric functions fn in (4.1), and notice that the
unique solution un has to be radially symmetric. Hence Theorem 8 can be used and in
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particular the application of Vitali’s theorem as in Theorem 1 implies that |∇un|q → |∇u|q
in L1

loc(RN ), so that u is a nonnegative solution to (1.2). �

To conclude our proofs, let us consider next uniqueness. An important part in the
proof of uniqueness for problem (1.2) is played by the minimal (classical) solution UR to
the boundary blow-up problem

(4.4)

{
−∆U + cUp − d|∇U |q = 0 in BR

U = ∞ on ∂BR,

where c, d > 0, which was shown to exist in Corollary 13 in [1] (actually it is unique when
0 < q ≤ 1). Let us quote an important property of this solution:

Lemma 9. The solution UR verifies

UR → 0 uniformly on compact sets of RN

when R→ ∞.

Proof. The solution UR is clearly radially symmetric. Hence it verifies{
−(rN−1U ′

R)
′ + rN−1(cUp

R − d|U ′
R|q) = 0 in 0 < r < R

UR(0) = U0,R, U
′
R(0) = 0,

for some U0,R > 0. It follows by comparison that UR is decreasing in R, and then it can
also be proved that U ′

R is decreasing in R (observe that U ′
R ≥ 0). This gives bounds for

both UR and U ′
R, and then it is standard to obtain that UR → U when R→ ∞, uniformly

on compacts, where U is a (radial) solution to

−∆U + cUp − d|∇U |q = 0 in RN .

Take an arbitrary x0 ∈ RN and for arbitrary R > 0 consider the function VR(x) =
UR(x− x0). It is clear that VR solves the problem{

−∆V + cV p − d|∇V |q = 0 in BR(x0)
V = ∞ on ∂BR(x0),

and thus by comparison we have U ≤ VR in BR(x0), since U < ∞ on ∂BR(x0). Letting
R → ∞ we arrive at U(x) ≤ U(x − x0) in RN . The arbitrariness of x0 implies that U is
constant, hence U ≡ 0. �

Now we can finally conclude the proofs of our results. We remark that the cases 0 <
q ≤ 1 and 1 < q < p are quite different.

Proof of Theorem 4. Assume first 0 < q ≤ 1. Observe that by Remark 3 we have a
nonnegative solution u ∈ C1(RN ) to (1.2). Let v ∈ W 1,∞

loc (RN ) be another solution to

(1.2). By the same discussion as in the proof of Theorem 2 we obtain v ∈ C1(RN ).
We have −∆(u − v) + |u|p−1u − |v|p−1v + |∇u|q − |∇v|q = 0 in RN . Observe on one

hand that

(4.5)
∣∣|∇u|q − |∇v|q

∣∣ ≤ ∣∣∇(u− v)
∣∣q

and on the other hand that

(4.6)
∣∣|u|p−1u− |v|p−1v

∣∣ ≥ c|u− v|p−1(u− v)

for some positive constant c. Thus setting z = u− v we have −∆z + c|z|p−1z − |∇z|q ≤ 0
in RN .
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If UR denotes the (unique) solution to (4.4) with d = 1, we have z < UR near ∂BR. By
using the comparison principle (cf. for instance Lemma 2.1 in [8]) we arrive at

z ≤ UR in BR.

We now let R → ∞ and use Lemma 9 to obtain that z ≤ 0 in RN , that is, u ≤ v in RN .
The symmetric argument then gives u = v and this shows uniqueness when 0 < q ≤ 1.

Now consider the case 1 < q < p. We notice that (4.5) is no longer valid. However, for
fixed small δ > 0 there exists a positive constant C(δ) such that∣∣(1 + δ)a− b

∣∣q ≥ (1 + δ)aq − C(δ)bq when a, b > 0.

Let UR be the minimal solution to (4.4) with d = C(δ) and c as in (4.6).
Let u ∈ C1(RN ) be the solution to (1.2) constructed in Theorem 2. We claim that

ū = (1 + δ)u+ UR is a supersolution to (1.2). Indeed:

−∆ū+ ūp + |∇ū|q = −(1 + δ)∆u−∆UR +
(
(1 + δ)u+ UR

)p
+

∣∣(1 + δ)∇u+∇UR

∣∣q
= −(1 + δ)up − (1 + δ)|∇u|q − cUp

R + c(δ)|∇UR|q + f

+
(
(1 + δ)u+ UR

)p
+

∣∣(1 + δ)∇u+∇UR

∣∣q.
But

∣∣(1 + δ)∇u + ∇UR

∣∣q ≥
∣∣(1 + δ)|∇u| − |∇UR|

∣∣q ≥ (1 + δ)|∇u|q − C(δ)|∇UR|q and(
(1 + δ)u+ UR

)p ≥ (1 + δ)pup + cUp
R ≥ (1 + δ)up + cUp

R, so that −∆ū+ ūp + |∇ū|q ≥ f .

Next, observe that for every solution v ∈ W 1,∞
loc (RN ) we have ∆v ∈ Lr

loc(RN ), hence

v ∈ W 2,r
loc (R

N ) and by the Sobolev embedding v ∈ C1(RN ). In particular, we have v < ū
near ∂BR and it follows by comparison as before that

v ≤ (1 + δ)u+ UR in BR

for every R > 0. Letting first R→ ∞, using Lemma 9 and then allowing δ → 0, we arrive
at v ≤ u.

It can be proved in a similar way that (1 − δ)u − UR is a subsolution to (1.2), and a
comparison as before yields (1− δ)u−UR ≤ v in BR. Letting R→ ∞ and then δ → 0 we
obtain u = v, which proves uniqueness. �

Remark 4. When q ≥ p, uniqueness of W 1,∞
loc (RN ) solutions does not hold. This can be

seen by taking f = 0, where aside from the trivial solution, there are infinitely many
negative radial (smooth) solutions. Indeed, if we set v = −u, we look for radial positive
solutions to −∆v + vp − |∇v|q = 0 in RN , which verify the Cauchy problem{

(rN−1v′)′ + rN−1(vp − |v′|q) = 0
v(0) = v0, v′(0) = 0,

for some v0 > 0. The solutions of this problem are defined in an interval [0, T ), and from
Proposition 3 in [1] we know that v′ > 0, v′′ ≥ 0, so that necessarily limr→T− v(r) = +∞.
However, if T <∞ then v would be a solution to{

∆v = vp − |∇v|q in BT

v = ∞ on ∂BT

which contradicts Corollary 13 in [1], since p ≤ q. Hence T = ∞ and this shows that
u = −v is a solution to −∆u+ |u|p−1u+ |∇u|q = 0 in RN .
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